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2 Schematic of the TLM model from Gonçalvès et al. (2007). . . . . . . . . . . . . . 80
3 A conceptual image of the colloid classes I-III is presented along with their origins. 93
4 General schematic of the stages of glass-water reaction . . . . . . . . . . . . . . . 107

6 ascemdoe.org November 9, 2010



Process Model Mathematical Formulation Requirements

1 Introduction to Process Models Requirements

1.1 ASCEM Overview

The Advanced Simulation Capability for Environmental Management (ASCEM) is intended to be
a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate
and transport in natural and engineered systems. The ASCEM program is aimed at addressing crit-
ical EM program needs to better understand and quantify flow and contaminant transport behavior
in complex geological systems. It will also address the long-term performance of engineered com-
ponents including cementitious materials in nuclear waste disposal facilities, in order to reduce
uncertainties and risks associated with DOE EM’s environmental cleanup and closure activities.
Building upon national capabilities developed from decades of Research and Development in sub-
surface geosciences, computational and computer science, modeling and applied mathematics, and
environmental remediation, the ASCEM initiative will develop an integrated, open-source, high-
performance computer modeling system for multiphase, multicomponent, multiscale subsurface
flow and contaminant transport. This integrated modeling system will incorporate capabilities for
predicting releases from various waste forms, identifying exposure pathways and performing dose
calculations, and conducting systematic uncertainty quantification. The ASCEM approach will be
demonstrated on selected sites, and then applied to support the next generation of performance
assessments of nuclear waste disposal and facility decommissioning across the EM complex.
The Multi-Process High Performance Computing (HPC) Simulator is one of three thrust areas
in ASCEM. The other two are the Platform and Integrated Toolsets (dubbed the Platform) and
Site Applications. The primary objective of the HPC Simulator is to provide a flexible and ex-
tensible computational engine to simulate the coupled processes and flow scenarios described by
the conceptual models developed using the ASCEM Platform. The graded and iterative approach
to assessments naturally generates a suite of conceptual models that span a range of process com-
plexity, potentially coupling hydrological, biogeochemical, geomechanical, and thermal processes.
The Platform will use ensembles of these simulations to quantify the associated uncertainty, sen-
sitivity, and risk. The Process Models task within the HPC Simulator focuses on the mathematical
descriptions of the relevant physical processes.

1.2 Purpose and Scope of this Document

At the highest level of the HPC Simulator design is a set of process models that mathematically rep-
resent the physical, chemical, and biological phenomena controlling contaminant release into, and
transport in, the subsurface. The objective of this requirements document is to provide a catalogue
of process models, along with their detailed mathematical formulation, for potential implemen-
tation in the HPC Simulator. This concise mathematical description and accompanying analysis,
provides critical information for requirements and design of both the HPC Core Framework (Task
1.1.2.2) and the HPC Toolsets (Task 1.1.2.3). This effort will also leverage ongoing efforts else-
where in the Department of Energy, including the Cementitious Barrier Project (CBP) funded also
by Environmental Management through EM-31.
It is important to note that with its focus on mathematical descriptions for a catalogue of process
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models, this requirements document is significantly different from a traditional Software Require-
ments Specification (SRS) document. Hence, this document does not follow the IEEE Std 830-
1998 template, and instead uses a process category based layout that is summarized in Section 1.4.
Moreover, this mathematical focus serves multiple audiences:

1. This document provides guidance to the developers engaged in designing and implement-
ing the HPC Core Framework and HPC Toolsets. To meet their needs, sufficient detail for
each process model is provided in the form of a background discussion, supporting equa-
tions, and references to relevant literature. The process models that are currently targeted for
implementation in the Phase 1 demonstration are listed in Table 1.

2. The document is also intended for “domain scientists” whose primary interest is in the pro-
cesses themselves. The presentation is intended to justify the choice of process models and
their mathematical detail.

3. Finally, the document is also intended for end users engaged in individual site applications.

Over time this document will evolve into a comprehensive graded presentation of models, from
complex to simple, under a general mathematical framework for each process category. The pri-
oritization and selection of process models from this catalogue for implementation is discussed in
Section 1.5. Evolution of the list of processes is inevitable, and the modular design of the HPC
Simulator will easily accommodate the addition of new process implementations.

1.3 Links to Other Thrust Areas

The set of requirements detailed in this document have a clear connection to the other two thrust
areas in ASCEM. In particular, many of the process model requirements follow from recommen-
dations made from end users as captured in the User Suggestions for ASCEM Requirements Doc-
uments (Section 5, pp. 18–19) (Seitz et al., 2010). These requirements include the need for mul-
tiphase flow and transport, reactive transport, and both groundwater flow. Surface water flow,
an important process at some contaminated sites, will be added as needed at a later date, but is
currently beyond the scope of the present effort. In addition, there is a need for modeling the
degradation of engineered barriers, including, for example, covers, liners, cementitious materials
and waste forms. Other aspects that were deemed desirable include the modeling of radionuclides,
source releases, and fractured media. All of these needs have been recognized and addressed in
some form within this document.
Similarly, there are several areas where the process models will need to interface with the Platform
and Integrated Toolsets Thrust Area. The Platform Thrust Area is tasked with developing the
tools necessary to set up the conceptual models. These models represent the subsurface flow and
reactive transport processes described in this document and will include 1) the geologic setting or
framework, 2) the physical, geochemical, and biological processes and their interactions, and 3)
the scenarios to which the models are applied. An end user wishing to perform a simulation will
have to specify features such as the process models, the initial and boundary conditions, and the
material properties. These features will have to be consistent with and fully integrated with the
existing capabilities of the process models. For example, for each process model that is available,
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there will be an associated set of constitutive models from which a user can select. In turn, each
process model will have a set of specifications that will dictate the parameter requirements that
are specific to the particular model and associated constitutive relations. Because of these links,
there needs to be close ties between the development of the process models and the tools being
developed by the Platform Thrust area so that the final simulation package can be reliable, robust,
and easy to use.

1.4 Organization and Layout of this Document

The remainder of the Mathematical Formulation Requirements and Specifcations for the Process
Models document is organized as follows. It presents an overview of the mathematical framework
that is used to model subsurface flow and reactive transport (Section 2). This overview is followed
by a series of sections focusing on individual process categories. These include a presentation
of Flow Processes in Section 3, Transport Processes in Section 4, Biogeochemical Reaction Pro-
cesses in Section 5, Colloid Transport Processes in Section 6, Thermal Processes in Section 7,
Geomechanical Processes in Section 8, and Source Terms, in Section 9. Each of these process
categories may present multiple process models. For example, biogeochemistry includes individ-
ual process models for sorption, mineral precipitation-dissolution, microbially-mediated reactions,
colloid generation, etc. In addition, models of differing fidelity can be accommodated by the HPC
code so, for example, several models for sorption (e.g., classical Kd, multicomponent-multisite
ion exchange, non-electrostatic surface complexation, electrostatic surface complexation) are in-
cluded.
The difficult question of prioritizing and ultimately selecting process models for implementation
in any given year is addressed in the following subsection (Section 1.5). Finally, the notational
conventions and variables are summarized in Section A.1.

1.5 Prioritization and Selection of Process Models

Within each section that focuses on a particular process category (e.g., flow, transport), sub-
sections contain the details of specific process models that may be implemented in the HPC Sim-
ulator. However, the inclusion of a process model in this document does not guarantee it will be
implemented in the HPC Simulator in the near term. A combination of many factors will be con-
sidered in the prioritization of process models and selection for implementation in any given year.
For example, these factors include, the relative importance of the process models to various EM
sites and the availability of required data for EM sites of interest. These types of information are
gathered and organized by the Site Application Thrust. In the first years of the ASCEM project,
prioritization must also consider the overhead of initiating development of the supporting HPC
Core Framework (i.e., supporting infrastructure), as well as the design and initial development of
the HPC Toolsets (i.e., the fundamental algorithmic building blocks).
Given these constraints, preliminary discussions involving all three thrusts have led to a list of
proposed process models for the first year’s development and the Phase I demonstration. This list
of proposed process models is presented in Table 1.
Finally, it is important to note that the set of process models described in this document is by no
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Table 1: An initial list of process models proposed for the Phase I demonstration is listed along
with their corresponding subsection.

Process Category Process Model Section

Flow Single-phase 3.5
Flow Richards 3.4

Transport Non-reactive, single component 4
Transport Reactive, multicomponent 4

Biogeochemical Reactions Sorption 5.3
Biogeochemical Reactions Precipitation/Dissolution 5.4

means exhaustive. Process models will be added based on the prioritization of specific EM needs
during periodic reviews and updates of this document.
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2 Overview of Process Models

There are many formulations of the process models for contaminant transport that one could
present. Here we will start with the equations for conservation of mass and energy in the pres-
ence of chemical reactions for a multiphase-multicomponent system. This leads to the basic flow
equations describing non-isothermal, multiphase, multicomponent flows in heterogeneous porous
media. A short description of phase behavior follows, which explains the relationship between
the composition of the phases and the flow equations. An introduction to some of the chemical
concepts needed concludes this section.
There are other components describing the physical processes that must be included, including
more detailed descriptions of transport, chemical processes, transport of colloids, geothermal, me-
chanical, and source terms. In addition, within flow there are many processes that must be taken
into account, the major one being infiltration from various sources including surface water, evapo-
ration and transpiration. All of these process models are described in greater detail in subsequent
chapters.

2.1 Continuum Hypothesis

A rock mass consisting of aggregates of mineral grains and pore spaces or voids is referred to as a
porous medium. An actual porous medium is a highly heterogeneous structure containing physical
discontinuities marked by the boundaries of pore walls which separate the solid framework from
the void space. Although it is possible in principle at least, to describe this system at the microscale
of individual pores, such a description rapidly becomes a hopeless task as the size of the system
increases and many pore volumes become involved. It is therefore necessary to approximate the
system by a more manageable one. One quantitative description of the transport of fluids and their
interaction with rocks is based on a mathematical idealization of the real physical system referred
to as a continuum. In this theory the actual discrete physical system, consisting of aggregates of
mineral grains, interstitial pore spaces, and fractures, is replaced by a continuous system in which
physical variables describing the system vary continuously in space. Allowance is made for the
possibility of a discrete set of surfaces across which discontinuous changes in physical properties
may occur. In this fictitious representation of the real physical system solids and fluids coexist
simultaneously at each point in space.

2.2 Fluid Description

A material body may be grouped into different regions having homogeneous properties at some
scale called phases. A phase may be considered a homogeneous mixture of its constituents. Jump
discontinuities in various properties generally occur at the boundaries of phases. For example, a
rock is considered an aggregate of different minerals each of which constitute a separate phase.
For a system in thermodynamic equilibrium a minimal set of independent components are used to
describe the system that may or may not correspond to the actual constituents in the system.
To start, we will denote the porosity of the medium by φ. We assume that the pore space is
filed with one or more phases. The saturation of each phase, sα denotes the fraction of the pore
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volume occupied by that phase. The fluids are composed of N chemical components (or lumped
components) that can appear in one or more phases. The components therefore are conserved
quantities that need to be tracked potentially across multiple phases. The phases themselves are
not conserved. We denote by nkα the number of moles of component k in phase α per unit pore
volume, or, in vector form nα. Thus,

�
α nα ≡ n is the vector of total moles of each component

per unit pore volume in the multiphase fluid system with elements nk. We note that the system can
be analogously defined by the composition of the fluid in terms of mass per unit pore volume, Mkα

or, in vector form Mα. We can also define nα =
�

k nkα and Mα =
�

k Mkα to be the total moles
and mass, respectively, per unit pore volume in phase α. With these definitions the mass density of
phase α is ρα = Mα/sα.
From these basic definitions we can define several other useful ways to characterize the compo-
sition of the phases, some of which are typically used in subsurface groundwater systems. Mass
fractions are defined as

Ykα =
Mkα

Mα
, (2.1)

mole fractions are defined as
Xkα =

nkα

nα
, (2.2)

molarity is defined as
Ckα =

nkα

sα
, (2.3)

and molality is defined as
mkα =

nkα

M0α
, (2.4)

where M0α denotes the mass of solvent in phase α per unit pore volume. Another useful measure
of concentration is the mass density ρiα defined as

ρkα =
Mkα

sα
=

Mα

sα

Mkα

Mα
, (2.5)

= ραYkα = WkCkα , (2.6)

where Wk is the molecular weight of component k. Or a molar density, ρ �
kα, can be defined

ρ �
kα =

nkα

sα
= ρ �

αXkα. (2.7)

With these definitions,
nkα = ρ �

αXkαsα, (2.8)

nk =
�

α

ρ �
αXkαsα. (2.9)

2.3 Governing Equations

The flow is governed by the equations of mass, momentum, and energy conservation.
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2.3.1 Conservation of Momentum

The conservation of momentum in groundwater systems is typically given by Darcy’s law, which
describes the volumetric flow rate, qα, of each phase in terms of the phase pressure, pα by

qα = −kkrα
µα

(∇pα − ραg), (2.10)

where k is the permeability (tensor) of the medium, kr,α is the relative permeability, which ex-
presses the modification of the flow rate by multiphase effects, µα and ρα are the phase viscosity
and density, respectively, and g is the gravitational force. The pressure in each phase is related
to a reference pressure, p, typically taken to be the least wetting phase by a capillary pressure,
pc,α = pα − p, which is a function of saturation.

2.3.2 Conservation of Mass

Molar (or mass) conservation for each component is given by

∂(φn)

∂t
+∇ ·

�

α

nα

sα
qα = ∇ ·D +R+Q, (2.11)

or equivalently, making use of (2.3), in notation perhaps more commonly found in groundwater
hydrology

∂(φ
�

α sαCα)

∂t
+∇ ·

�

α

Cαqα = ∇ ·D +R+Q. (2.12)

We note that the component conservation equation are often written in terms of mole fractions us-
ing Eqns. (2.8) and (2.9). Here D are diffusive terms that include multiphase molecular diffusion
and dispersion, R are reaction terms and Q are source terms. Both the diffusion / dispersion, reac-
tion terms and source terms can be quite complex. Their particular forms are discussed elsewhere.

2.3.3 Conservation of Energy

For non-isothermal systems it is necessary to include the energy conservation in the system of
equations. The overall energy balance must include energy in the solid phase. If we assume that
the porous medium and the fluids are in thermal equilibrium, the total energy balance is of the form

∂Ht

∂t
+∇ ·

�

α

qα

sα
nα

Thα = ∇ ·QT +RH +
∂
�

α pαuα

∂t
+∇ ·

�

α

qα ·∇pα, (2.13)

where
Ht = (1− φ)ρrHr + φ

�

α

nα
Thα (2.14)

is the total enthalpy of the system, uα is the internal energy of phase α, hα are the partial molar
phase enthalpies, Hr is the enthalpy of the medium and ρr is the density of the medium. Here QT

represents other energy transport processes such as thermal conduction, radiation, or dispersive
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heat transfer, and RH represents energy release from reactions and external heating. This represents
a form of the energy equation in which the solid and the fluid phases are in thermal equilibrium.
If they are not, the fluid and solid portions of the enthalpy become distinct variables and RH will
contain relaxation terms that equilibrate the two temperatures.
In most cases, the term on the right hand side of Eqn. (2.13),

∂
�

α pαuα

∂t
+∇ ·

�

α

qα ·∇pα, (2.15)

can be omitted from the system. Omitting this term implicitly assumes that the change in phase
pressures is slow so that these terms can be ignored. It is worth noting that many people for-
mulate the energy equation without this term and replace total enthalpy by total internal energy.
Formulations based on internal energy make a similar assumption by dropping a term of the form

�

α

pα∇ · qα (2.16)

from the energy equation.

2.4 Phase Behavior

The component conservation equations express the change in total moles of each of the component
due to advection, diffusion, and chemical reactions. Since components are being transported in
phases, it is necessary to know the composition of the phases before we can solve the flow equa-
tions. This decomposition is referred to as the phase behavior of the system. For the nonisothermal
system, the phase behavior is determined by saying that the equilibrium state of the mixture occurs
at the point of maximum entropy, or equivalently, a minimum of the negative entropy. For isother-
mal systems, phase equilibrium occurs at the minimum of the Gibbs free energy. The entropy and
Gibbs free energy of the phases are derived from the chemical potential µα. These chemical po-
tentials are typically specified in terms of an equation of state to model the dependence of pressure
on temperature, composition, and specific volume of the phase. For a more detailed discussion see,
for example, Michelsen and Mollerup (2004), Brantferger et al. (1991).
The chemical potentials µα are functions of pα, T , and phase composition nα. (Here, we have
preserved the role of capillary pressure in determining the thermodynamic behavior of the system.
One simplification is to define the thermodynamics in terms of the reference pressure and retain
capillary pressure effects only in the definition of phase velocities, see Brantferger et al. (1991).)
Furthermore the major thermodynamic variables describing each phase can all be expressed in
terms of the phase’s chemical potential. In particular, the partial molar entropy’s are given by

σα = −
�
∂µα

∂T

�

Xα,pα

, (2.17)

where Xα are the mole fractions and the partial molar enthalpies are given by

hα = (µα + Tσα) . (2.18)
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Here the phase equilibrium problem is to determine the molar composition of the phases nα given
the total moles n, pressure p and the total enthalpy Ht. The equilibrium distribution of the com-
ponents is given by minimizing the negative entropy of the system. In a general multiphase setting
this becomes

min − S = −
�

α

nT
ασα, (2.19)

subject to
n =

�

α

nα, (2.20)

and
Ht = (1− φ)ρrhr + φ

��

α

nT
αhα

�
, (2.21)

along with inequality constraints (nα ≥ 0) guaranteeing non-negativity of the compositions and
thermal stability of the fluid (nα

T∂hα/∂T > 0). (As noted above, if we do not consider the
solid and the fluids to be in thermal equilibrium then we hold the total fluid enthalpy, Hf =
nT

l hl + nT
v hv, constant rather than the total enthalpy).

Treating this minimization problem, typically referred to as an isenthalpic flash calculation, has
been discussed in the literature (see Brantferger (1991); Michelsen and Mollerup (2004); Michelsen
(1999)) and will not be discussed in detail here. it is worth noting, however, that the Hessian of the
negative entropy is a rank one perturbation of the Hessian of the Gibbs free energy, which indicates
that the two functions are closely related.
In addition, at equilibrium the chemical potentials are equal; for example, in a two phase systems
where the phases are denoted by l and v,

µl(Xl, T, pl) = µv(Xv, T, pv). (2.22)

Here, the chemical potentials are typically specified in terms of mole fractions rather than moles;
however, we can use the definition of mole fractions to express them in this form.
In addition to determining the composition of the phases and the temperature, the phase behav-
ior also determines the properties of the phases. In particular, given pressure, temperature, and
component molar densities, we can compute the volume occupied by the phases. To complete the
mathematical formulation of the system we require that the sum of the phase volumes match the
available pore volume according to the relation

1 =
�

α

sα(pα, T,nα). (2.23)

This equation constrains the evolution of the component conservation and energy equations. Here
we have implicitly used the capillary pressure to relate the phase pressures to the reference pres-
sure. Note that the sα can be expressed in terms of the total moles per pore volume of the phase,
given by

nT
α = eTnα, (2.24)

where e is a vector of 1’s, divided by a molar density, ρ �
α; thus,

sα =
nT
α

ρ �
α

. (2.25)

15 ascemdoe.org November 9, 2010



Process Model Mathematical Formulation Requirements

2.5 Reactive Transport

Chemical reactions may take place within a single fluid phase or between different fluid phases
and between solids and fluids. Consider a mixture consisting of various fluid phases designated
by α and solid grains with each solid phase designated by the index m. For convenience it is
assumed that the same set of species are present in all fluid phases. Solid-Solid reactions are
assumed to be mediated through one or more fluid phase. Reactions within a single fluid phase are
referred to as homogeneous and all other reactions that involve fluid-fluid or fluid-solid reactions
as heterogeneous. Homogeneous reactions can be written in canonical form in terms of a set of
basis or primary species {Ajα} as (Lichtner, 1985)

�

i

νjiAjα � Aiα , (2.26)

with reaction rate Iiα, stoichiometric reaction coefficients νji and secondary species Aiα. Such
reactions are often fast and their rates may be represented through equilibrium mass action relations
(see Section 5.1).
Heterogeneous reactions take the form of reaction of a fluid phase with minerals which can be
written in canonical form as �

j

νjmAjα � Mm, (2.27)

for mineral Mm with reaction rate Imα and stoichiometric coefficients νjm. Here it is assumed
that different fluid phases may react with the same minerals in the solid aggregate. These reac-
tions are represented as a parallel reaction network with potentially different reaction mechanisms.
Since mineral-water reactions tend to be slow, they are generally represented with kinetic rate laws
(Steefel and Lasaga, 1994).
In addition, phase transformations between different fluid phases may take place described by
reactions of the form

Ajα � Ajβ, (2.28)

between phases α and β. If Iαβj denotes the rate of reaction (2.28), then it follows that the rate is
antisymmetric in the phases α and β

Iαβj = −Iβαj . (2.29)

For a system of Np phases, there are a total of 2Np − 1 different equilibrium phase combinations.
The total number of independent degrees of freedom is independent of the number of phases and
equal to NC +1, where NC denotes the number of independent chemical components. All reaction
rates are assumed to have units of moles and are converted to mass units by multiplying by the
appropriate formula weights Wj , Wi, and Wm associated with the subscripted species.
To develop mass conservation equations for the reacting constituents, phase α◦ is chosen as a
reference phase with respect to which interphase mass transfer is described according the reaction
given in Eqn. (2.28). In this treatment it is assumed that phase α◦ refers to the aqueous phase.
For a mass-based description and taking into account kinetic mass transfer rates for homogeneous
and heterogeneous reactions, Eqns.(2.26) and (2.27), the mass balance equations for each primary
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species can be written as

∂

∂t

�
φsα◦ρjα◦

�
+∇ ·

�
φsα◦ρjα◦vjα◦

�
= −Wj

�

i

νjiIiα◦

−Wj

�

β �=α◦

Iα◦β
j

−Wj

�

m

νjmImα◦ , (2.30)

∂

∂t

�
φsβρjβ

�
+∇ ·

�
φsβρjβvjβ

�
= −Wj

�

i

νjiIiβ

+WjI
α◦β
j

−Wj

�

m

νjmImβ, (2.31)

and for each secondary species as

∂

∂t

�
φsαρiα

�
+∇ ·

�
φsαρiαviα

�
= WiIiα. (2.32)

Changes in mineral concentrations are described by the equations

∂φm

∂t
= V m

�

α

Imα, (2.33)

with molar volume V m and where the sum over α on the right-hand side is over all fluid phases that
react with the mth mineral. It is assumed that the solid phase is stationary, an assumption which
must be relaxed in order to incorporate mechanical deformation effects.
In these equations viα denotes the mean velocity of the ith species in phase α. The velocity vα of
each fluid phase α may be represented by the baryocentric form defined as

vα =
1

ρα

�

k

ρkαvkα. (2.34)

The diffusive flux JD
kα is defined as

JD
kα = ρkα

�
vkα − vα

�
, (2.35)

= −ραDα∇Xkα, (2.36)

with the property �

k

JD
kα = 0. (2.37)

Note that for simplicity it is assumed that the diffusion coefficient Dα is species-independent and
only depends on the particular phase α. This assumption is generally not correct and the effects
of a local electric field must be taken into account in a more general treatment involving diffusion
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of charged species to maintain local charge balance (Section 4.6). With this definition of diffusive
flux one has

ρkαvkα = ραXkαvα + JD
kα. (2.38)

It should be noted that the choice of the baryocentric velocity is arbitrary and other definitions are
also possible. Introducing the Darcy velocity qα for each fluid phase defined as

qα = φsαvα, (2.39)

the flux becomes
ρkαvkα =

1

φsα
ραXkαqα + JD

kα . (2.40)

Summing Eqns.(2.30)–(2.32) over all species and fluid phases yields the overall mass conservation
equation

∂

∂t

�
φ
�

α

sαρα
�
+∇ ·

�
φ
�

α

ραvα

�
= 0, (2.41)

where the reaction rate terms disappear through conservation of mass of each chemical reaction
�

j

Wjνji = Wi, (2.42)

and �

j

Wjνjm = Wm. (2.43)

Typically, the molar concentration defined in Eqn.(2.3) is used in place of mass concentration. In
this case under the assumption of incompressible flow the diffusive flux can be written approxi-
mately as

JD
kα � −Dα∇Ckα. (2.44)

which is Fick’s First Law.

2.5.1 Partial Equilibrium

Typically the reaction rates Iiα for secondary species are transport-controlled and may be deter-
mined by imposing conditions of local equilibrium through algebraic mass action constraints. In
this case the rates Iiα can be eliminated by substituting Eqn.(2.32) into Eqns.(2.30) and (2.31).
Summing over all fluid phases and assuming molar concentration variables are used this yields
conservation equations for the primary species given by

�

α

�
∂

∂t

�
φsαΨjα

�
+∇ ·Ωjα

�
= −

�

αm

να
jmImα, (2.45)

which may be written alternatively as

∂

∂t
φ
�

α

sαΨjα +∇ ·
�

α

Ωjα = −
�

αm

να
jmImα, (2.46)
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where the total concentration Ψjα and flux Ωjα are defined, respectively, by

Ψjα = δα◦αCjα +
�

i

νjiCiα, (2.47)

and
Ωjα = δα◦αJ jα +

�

i

νjiJ iα, (2.48)

where J jα and J iα denote the solute flux for primary and secondary species, respectively.

2.6 Fractured and Highly Heterogeneous Media

Important processes exist at the pore scale that can affect flow and transport at the continuum scale.
For example, conceptual models of fracture flow and rock-water chemical interactions have been
developed and studied at various scales. Although these models are considered a priority for later
years, it is important to provide background information that may impact the current requirements
and design documents. Thus, the following discussion presents a high-level overview of conceptual
models used in fractured and highly heterogeneous media.

2.6.1 Overview

The fact that subsurface flow and transport occurs in an extremely heterogeneous material envi-
ronment, which is often hierarchical in nature, has led to the multi-continuum class of models.
Broadly speaking, these models separate the subsurface into several distinct materials based on
flow and transport properties. For example fractures and clay layers have a permeability value
that is orders of magnitude different than the surrounding rock or soil. Depending on the appli-
cation, the properties of the different continua can be averaged into an “upscaled” property or left
distinct. Other approaches have been taken to handle heterogeneities and transport occurring at
small scales. For example, the field of stochastic hydrology attempts to quantify the impact of
small-scale permeability heterogeneity by casting the governing equations for hydrologic flow and
solute transport as a function of random variables (Zhang, 2001). When multiple continua remain
distinct, sub-grid-scale processes arise. While this section is concerned with process models and
not numerical grids, we can assume that at almost all grid resolutions, there is need, based on
the discussion above, that several materials and processes will need to be represented in a single
gridblock. For example, fracture widths are often on the order of millimeters while a fine grid in
a basin-scale simulation may be on the order of meters. Sub-grid-scale models address this need.
These models include common double permeability (DK), double porosity (DP, Barenblatt et al.
(1960); Warren and Root (1963)), Multiple interacting continua (MINC, Pruess and Narasimhan
(1985)), and Generalized Double Porosity Method (GDPM, Zyvoloski et al. (2008)).
Permeability in soils and rocks can be dominated by fine scale structure such as fractures, macro-
pores, and clay layers. Fractures and macropores can be thought of conceptually as globally con-
nected flow paths surrounded by material that acts as fluid storage. Similarly, clay layers can pro-
vide a contaminant release to a high permeability aquifer through rate-limited diffusion; the double
porosity conceptualization has been validated by field and laboratory data and under isothermal
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conditions. The original development of dual porosity models began with the work of Barenblatt
et al. (1960) who recognized that in fractured porous media, the fractures provide the primary con-
duit for mass transport, whereas the rock matrix could be represented as a fluid storage medium.
In such a system the normal mass and energy balance equations can be written for the fracture
domain, and an additional equation is written for the matrix node, which is connected only to its
corresponding fracture node in a numerical model. In this formulation, the matrix is not a con-
tinuous medium in which the full mass and energy transport equations are solved. Nevertheless,
important fluid and energy storage terms within the matrix blocks can be explicitly included. A
significant limitation of the dual porosity (DP) concept is that although a matrix node is introduced
to capture storage in the medium surrounding each fracture, there is no ability to capture gradients
into the matrix with a single node. The solution to the original dual porosity models are sometimes
called “quasi-steady” matrix solutions because of this limitation. Pruess and Narasimhan (1985)
and Zyvoloski et al. (1997) extended the treatment of the matrix material by introducing a second
matrix node.
Dual Permeability (DK) methods are like double porosity (DP) methods in that the grid-block
is divided into distinct materials with different properties. Unlike DP methods, the secondary
material is not only connected to the primary material, but also to other secondary material. This
method is appropriate for non-isothermal and high-capillary pressure models. In these models heat
conduction and capillary flow in the secondary (matrix) material is important.
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3 Flow Processes

3.1 Overview

In this section the basic flow models for single phase flow, Richards’ equation and for multiphase
flow are discussed, which is then followed by a section on infiltration. At the end of this section,
data requirements for flow models are discussed, although this is a potentially very broad topic that
can only be treated briefly here. Surface water flow and groundwater-surface water interactions will
eventually be considered formally, since this is an important effect at many DOE sites, including
Oak Ridge. At this stage, however, surface water is treated as a prescribed boundary condition.

3.2 Assumptions and Applicability for Flow Equations

Subsurface flow simulations typically assume that Darcy’s law is valid. As this law gives a re-
lationship between velocity and pressure, it essentially replaces the momentum equation. There
has been much research to support the validity of Darcy’s Law (?). Most references give the ap-
plicability of Darcy’s Law to be for laminar flows with Reynolds numbers less that 10 using the
pore throat diameter for a soil. There has been some effort to include inertial as well as turbulence
effects that can occur near the wells.
It is also assumed that thermodynamic equilibrium (mechanical and thermal) exists for each grid
block. Sub-grid scale features will often play a prominent role in multi-fluid simulations. Faults
and fractures will likely be fast paths for contaminant transport and can effectively be treated
with multiple porosity models. Similarly, rate-limited diffusion from clay inclusions can also be
modeled with a multiple porosity material.
Modeling multiphase flow in liquid-gas systems is essential for many applications ranging from
nuclear waste disposal involving boiling to problems involving a variably saturated zone with
oxidation-reduction reactions taking place with consequent consumption of oxygen, for example.
The EM complex includes a diversity of hydrologic settings that reflects the variability of geologic
and climatic condition in the United States. The Hanford and Oak Ridge (or Savannah River) sites
represent end members of these conditions. The Hanford site is very dry with a large vadose zone,
a deep water table, and little atmospheric recharge. The Oak Ridge and Savannah River sites have
wet conditions that result in a small vadose zone and a very shallow water table. The waste forms
and contaminant sources vary from the simple (increased total dissolved solids) to the complex
(multi-phase air-water-NAPL at Oak Ridge and Savannah River) to the daunting (mixed NAPL
and radioactive waste at Rocky Flats and the Hanford site).

3.3 General Formulation for Multiphase Flow

The model equations that describe the flow of multiple fluid phases in the subsurface are a combi-
nation of the continuity equation and Darcy’s law, which replaces the momentum equation.
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3.3.1 Component Conservation Equations

For each component, j, we have

∂

∂t

�
φ
�

α

ραsαYjα

�
+∇ ·

�
�

α

kkrαραYjα

µα
∇(pα − ραg)

�
= Qj, (3.1)

where k is the absolute permeability of the medium, krα is the relative permeability of phase, ρα
and sα are the density and saturation of phase α respectively, Yjα is the mass fraction, and Qj is
the net source term for component j.

3.3.2 Relative Permeability and Capillary Pressure

For both Richards’ equation and more general multiphase problems, the model requires represen-
tations of relative permeability and capillary pressure. For two-phase systems, relative perme-
ability and capillary pressure data are widely available for the more common forms such as van
Genuchten-Mualem and Brooks-Corey.
In Equation (3.1) the individual phase pressures, pα, are related to a reference pressure p by a
capillary pressure pcα that depends on saturation,

pcα = pα − p. (3.2)

The capillary pressure is a function of saturation. Below we summarize two of the more common
models for relative permeability and capillary pressure.

van Genuchten Capillary Pressure and Relative Permeability Relations. Effective liquid sat-
uration described by the van Genuchten (1980) relation is given by

se = [1 + (α|Pc|)n]−m , (3.3)

where Pc represents the capillary pressure [Pa], and the effective liquid saturation se is defined
further by

se =
sl − srl
s0l − srl

, (3.4)

where sl denotes liquid saturation, srl denotes the residual saturation, and s0l denotes the maximum
saturation. The constants n and m are generally related by the expressions

m = 1− 1

n
, n =

1

1−m
. (3.5)

The inverse relation is given by

Pc =
1

α

�
(se)

−1/m − 1
�1/n

. (3.6)
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The van Genuchten-Mualem relative permeability for the liquid phase is given by

krl =
√
se
�
1−

�
1− s1/me

�m�2
. (3.7)

For the gas phase, the following formulation has been suggested

krg = 1− krl, (3.8)

but a formulation proposed by Luckner et al. (1989) is often preferred and is given by

krg = (1− sekg)
1/3

�
1− s1/mekg

�2m
, (3.9)

where sekg is defined in terms of the liquid saturation, sl, and the residual gas saturation, sgr, as

sekg =
sl

1− sgr
. (3.10)

Brooks-Corey Capillary Pressure and Relative Permeability Relations. Liquid saturation as
described by the Brooks and Corey (1964) is given by

se = (α|pc|)−λ , (3.11)

with the inverse relation given by

pc =
1

α
(se)

−1/λ . (3.12)

Here λ is a fitting parameter.
Brooks and Corey (1964) used the Burdine (1953) theory to derive an expression for the liquid
relative permeability function given by

krl = (se)
(2+3λ)/λ

= (α|pc|)−(2+3λ) . (3.13)

For the gas phase, the relative permeability is given by

krg = (1− se)
2 �1− s(2+λ)/λ

e

�
, (3.14)

Alternatively, both Equation (3.8) and Equation (3.9) have been used to describe the relative per-
meability of the gas phase.

Conservation Equations - Energy. For nonisothermal problems this system must be augmented
with an energy equation. In the case of multi-phase flow, the conservation of energy equation takes
a slightly different form from that given in Equation (2.13)

∂

∂t

�
(1− φ)ρrur + φ

�

α

ραuαSα

�
= ∇ ·

�

α

�
kkrαραhα

µα

�
∇(pα − ραg)+∇·QT+Qe, (3.15)

where: ρr is the rock density, ur is the internal energy of the rock, uα is the internal energy of
phase α, hα is the enthalpy of phase α, QT represents thermal conduction and radiation, and Qe is
a source or sink of energy.
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Closure and Constraint Equations. The equations above represent the conservation of water
mass, the conservation of the jth non-aqueous component, and the conservation of energy. These
equations are augmented by the following constraints. The mass fractions (or equivalently, the
mole fractions) in each phase must sum to 1:

�

j

Yjα = 1. (3.16)

The phase saturations must sum to 1: �

α

sα = 1. (3.17)

An equation of state is used to specify the phase behavior and to supply additional fluid properties.

3.4 Richards’ Equation

3.4.1 Overview

Richard’s equation is often used to describe single phase flow under partially saturated conditions
(i.e., the pores are not occupied exclusively by a single phase). As such, it requires the introduction
of a relative permeability and a capillary pressure relations as discussed in Section 3.3.2. Richards’
equation is well suited to very large numerical problems (millions of degrees of freedom) because
it requires only one independent variable per cell. This is accomplished by assuming a static gas
phase. There are limitations to this approach. For example, when light or chlorinated hydrocar-
bons are present, even in very dilute quantities, the accurate representation of Henry’s partitioning
into the vapor (air) phase can be important. With Richards’ equation, the partitioning can be repre-
sented, but the subsequent dilution due to air movement cannot. Another problem that can arise in
deeper saline aquifers is the change in water density due to changes in brine concentration. In this
case, another material balance equation can be introduced and solved in a fully coupled manner
(with additional CPU and memory requirements) or the density variation can be obtained in a less
coupled manner such as explicitly solving the flow and transport independently and calculating the
density as a function of concentration. This method, while easier, has numerical stability concerns.
As noted above, a variable density precludes the use of a head formulation for Richards’ equation.

Assumptions and Applicability. Richards’ equation makes the fundamental assumption that
we are neglecting the movement of the gas phase. Because of this assumption, using Richards’
equation may limit the kinds of transport analysis that can be done. It should also be noted that
Richards’ equation is often highly nonlinear with relative permeability of the liquid (most com-
monly water) phase, krl (in turn a function of the liquid saturation, sl) and the liquid pressure,
pl(swl).
There are limitations to this approach. For example, when light or chlorinated hydrocarbons are
present, even in very dilute quantities, the accurate representation of Henry’s partitioning into the
vapor (air) phase can be important. With Richards’ equation, the partitioning can be represented,
but the subsequent dilution due to air movement cannot. Another problem that can arise in deeper
saline aquifers is the change in water density due to changes in brine concentration. In this case,
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another material balance equation can be introduced and solved in a fully coupled manner (with ad-
ditional CPU and memory requirements) or the density variation can be obtained in a less coupled
manner such as explicitly solving the flow and transport independently and calculating the density
as a function of concentration. This method, while simpler, has numerical stability concerns. As
noted above, a variable density precludes the use of a head formulation for Richards’ equation.
Finally, it is often the case that Richards’ equation is presented in terms of hydraulic head instead
of pressure.

3.4.2 Process Model Equations

Richards’ equation provides the necessary physics to represent the flow of a liquid phase (typically
water) under partially saturated conditions, with the assumption made that the second phase is
inactive. Richards’ equation is derived from the conservation of liquid mass continuity equation:

∂(φ slρl)

∂t
= ∇ · (ρlql) +Ql, (3.18)

where ρl is the liquid density, Ql is a source or sink, and ql is the liquid velocity given by Darcy’s
Law. This formulation differs from Equation (3.22) only in adding a relative permeability of the
liquid, krl

ql = −kkrl
µl

(∇pl − ρlg) , (3.19)

where k is the intrinsic rock or soil permeability, µl is the liquid viscosity, pl is the liquid pressure
(or capillary pressure), and g is the acceleration of gravity.
These equations are usually combined to form the traditional form of Richards’ equation:

∂ (φ slρl)

∂t
= ∇ ·

�
Kkrlρl
µl

(∇pl − ρlg)

�
+Ql. (3.20)

Typical models of relative permeability as a function of saturation are the van Genuchten-Mualem
relations (Equation (3.7)) and the Brooks-Corey relations (Equation (3.13)).

3.5 Single-Phase Flow

3.5.1 Overview

The most basic case of flow is that of a single phase in a porous medium. Notwithstanding its sim-
plicity, it has a wide application to describing subsurface processes. As we described in Section 2,
the mathematical treatment is based on Darcy’s Law for momentum balance for flow in a porous
medium.

Assumptions and Applicability. There are many assumptions required for the strict validity of
Darcy’s Law, including incompressible, laminar flow.
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3.5.2 Process Model Equations

For single phase flow in porous media under isothermal conditions the general formulation dis-
cussed in section 2 reduces to

∂

∂t
(φρl) +∇ · (ρlq) = Q, (3.21)

where ρl denotes the fluid density (sometimes considered to be a function of p), Q represents a
source/sink term and q is the Darcy velocity

q = − k

µl
(∇p− ρg), (3.22)

In place of this formulation for Darcy’s Law, it is common to see it written in terms of hydraulic
head defined as:

h = z +
p

ρlg
. (3.23)

Use of the hydraulic head as the key variable leads naturally to the use of the hydraulic conductivity,
K, defined as

K =
kρlg

µl
. (3.24)

In the case where the density and viscosity are constant, therefore, it is possible to write Darcy’s
Law as

q = −K∇h. (3.25)

3.6 Infiltration

3.6.1 Overview

The infiltration process models are components of the subsurface fluid migration. Infiltration can
be an important driving force for contaminant transport, especially in the vadose zone. Engineered
subsurface barrier technology seeks to minimize the infiltration driving force for contaminant mi-
gration. There are a number of approaches and models that can be applied to predict infiltration
processes. These range from simple storage routing models to the more mechanistic Richards’
equation-based models that simulate water flow and heat transport in response to meteorological
forcing and plant water uptake. Within the complex interaction of physical, hydrologic, and biotic
processes that control field-scale infiltration at the site of interest, the ideal model should be capa-
ble of assessing the impact of infiltration on contaminant transport, as well as supporting barrier
design and performance assessment.
Predicting infiltration requires consideration of unsaturated flow processes, precipitation, snow ac-
cumulation and melting, surface runoff, water storage, evaporation, transpiration, lateral diversion
along sloped layers, and, ultimately, deep percolation (Ward and Gee, 1997; Ward and Keller,
2005). All of these processes occur in response to forcing meteorology that leads to temporal
variability in air temperature, relative humidity, wind speed, and barometric pressure and, in the
most sophisticated implementations, require the solution of coupled equations for mass and energy
transport.
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A minimum set of processes for modeling the water budget should include:

P + I = Rover +∆W +D +GD + E + T, (3.26)

where:
P = precipitation
I = irrigation
Rover = overland flow (run-off and run-on)
D = drainage out of the soil cover (diverted by reduced-permeability layer)
GD = ground water recharge (deep percolation past a reduced-permeability layer)
∆W = change in soil water storage
E = evaporation
T = transpiration.
Evaporation is defined as the process by which liquid water is transformed into a gaseous state
and the subsequent transfer of this vapor to the atmosphere. Transpiration is the loss of water
from plants through their stomata to the atmosphere. Plants compensate for transpiration losses by
taking up water from the soil.
Another requirement is that the process models must include a full energy balance (nonisothermal)
option for evapotranspiration processes. Water that does not run off the surface must be available
for evaporation from the soil or plant surfaces, or infiltration into the soil profile. Soil water content
must depend on the interactions of precipitation, temperature, vegetation, and albedo changes that
vary temporally (e.g., diurnally, seasonally, and episodically). Spatially and temporally variable
water storage and flux must be available for contaminant transport.

3.6.2 Process Model Requirements

Precipitation. The treatment of precipitation must include all natural sources of moisture that
may reach the surface in the form of rain, snow, sleet, hail, dew, and fog, and must account for pre-
cipitation not available for infiltration. This includes precipitation intercepted by the plant canopy,
from which it is evaporated or transpired without ever contacting the soil; and sublimation, the
direct conversion of water from the solid phase to the vapor phase. This should also account for
the presence of a snow cover that can delay infiltration, reduce evaporation rates, and in the event
of rapid snowmelt, lead to surface runoff.

Non-Precipitation Surface Recharge (including leaks). Process models should account for
surface recharge sources (e.g., irrigation water used during construction as a dust control agent
and post-construction to support the establishment of vegetation; water condensing on plant sur-
faces and falling to the ground once the maximum storage depth in the canopy is exceeded, pipe
leaks). These sources must also be subject to evaporation from soil and plant surfaces with the
remainder becoming available for runoff or infiltration.
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Evapotranspiration. Evapotranspiration models should include all the processes that convert
water from the aqueous phase into water in the gaseous phase, i.e., water vapor. This should also
account for evaporation from soil and plant surfaces and plant transpiration and include options
where these components vary with soil properties and structure of the plant canopy.

Evaporation. In particular, evaporation models should account for surface wetness controls on
evaporation for soil and plant surfaces. This should be done using the concept of potential evap-
oration, the amount of water that could be evaporated were it freely available under the energy
and atmospheric conditions (i.e., function of surface and air temperatures, insolation, and wind
speed) that control water-vapor concentrations immediately above the evaporating surface. Actual
evaporation will be calculated as a fraction of potential evaporation that accounts for the water
availability and humidity differences between the atmosphere and the evaporating surface. Evap-
oration from wet vegetated surfaces will depend on the amount of water that has accumulated on
the leaves and stems following precipitation events. The evaporation rate will be determined by
the amount of energy available, i.e., the solar radiation that is intercepted, the relative humidity of
the air, and the vapor pressure of the air above the evaporating surface. For evaporation to occur,
the vapor pressure of the free water in or on plants must be greater than the vapor pressure of water
in the air. Finally, models should be able to account for air flow over the plant surfaces.

Transpiration. Transpiration models need to account for passive transpiration processes con-
trolled by the humidity of the atmospheric and the moisture content of the soil. To take advantage
of existing databases, use the concept of potential and actual transpiration. The potential transpi-
ration rate depends on the leaf area and the evaporative demand of the atmosphere, assuming soil
water is not limiting. The evaporative demand will be a function of incoming solar radiation and
its partitioning into sensible and latent heat fluxes, vapor pressure deficit, and wind speed. Actual
transpiration is the water limited transpiration rate, and the ratio between actual and potential tran-
spiration is indicative of the extent to which the plant suffers from water stress. Actual transpiration
will be a function of temperature and root water uptake reductions caused by water stress.

3.6.3 Plant Interactions

Root Water Uptake. Account for water uptake by plants from the soil to compensate for tran-
spiration losses. Include stomatal opening and closing to control water loss and the capability to
take up water held at very high matric potentials.

Canopy Interception. Models should account for precipitation falling on vegetative surfaces,
i.e., the plant canopy, that collects on these surfaces. They should also be able to account for
intercepted water being absorbed by plant surfaces, evaporated from these surfaces, or eventually
dripped to the ground surface after the interception capacity is exceeded. Include options for
specifying relationships between interception of rainfall and rainfall intensity.
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3.7 Data Requirements for Flow

3.7.1 Permeability and Porosity

The most basic properties of the subsurface, which are required for all of the flow models, are
permeability and porosity. Often this data can only be provided by sparsely located well logs and
at a spatial scale much finer than the scale of the model. As a consequence, techniques of upscaling
are required to fill in the missing data and extrapolate to larger scales.
Permeability estimates are available for a large variety of soils and rocks. When conceptual (and
numerical) models have cells that represent fractures or faults, field tests (pumping and/or tracer)
are required to determine effective permeabilities. Porosity data is also available for many rock
and soil types.

3.7.2 Relative Permeability and Capillary Pressure.

For both Richards’ equation and more general multiphase problems, the model requires representa-
tions of relative permeability and capillary pressure. For two-phase systems, relative permeability
and capillary pressure data are widely available for the more common forms such as van Genuchten
and Brooks Corey.
When a NAPL phase is present and the likelihood of three phases is significant, much of the rel-
ative permeability data available from the soil literature may have only limited applicability and
experiments on at least core size sample will be necessary. Stone (1973) presented a method to
estimate three-phase relative permeability that is in common usage in the oil industry. However,
when fractures or faults are present, parameters of the relative permeability and capillary pressure
models are estimated with field data. Relative permeabilities often exhibit strong hysteretic behav-
ior. Land’s method (Land, 1968; Spiteri and Juanes, 2006) is one approach for handling hysteretic
behavior that is relatively simple to implement and is commonly used in the oil industry.
Some capillary pressure data is available in the database described by Schaap et al. (2001). Capil-
lary models derived using surface tension data of pure components (Prausnitz et al., 1977) are used
where experimental data is not available.

3.7.3 Fluid Characterization

The model equations must also be augmented with property data for the fluids. In simple prob-
lems we require only estimates of density and viscosity for each of the flowing phases. For more
complex problems in which we are modeling a multicomponent system, additional data is required.

Equation of State. For multicomponent system, equation of state (EOS) data is required for wa-
ter and all the NAPL components. Typically these are EOS for pure substances that are combined
for mixtures. A basic EOS relates density to pressure and temperature. The form for the EOS
is typically cubic such as the Soave-Redlich-Kwong (SRK) or the Peng-Robinson (PR) models.
Tabular models are also in common use.
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Mixture thermodynamics is used to combine pure phase EOS’s for the application. The EPA
lists over 80 potential NAPL components (volatile organic compounds or VOCs) that can cause
groundwater contamination and has data bases with at least some properties for these contaminants.

Mixture Internal Energy and Enthalpy. These will generally follow the simple additive rule
based of component values and mass fraction. Consideration must be also given to heats of solu-
tion.

3.7.4 Boundary Conditions and Initial Conditions

Boundary and initial conditions can take several different forms depending on the application.
Dirichlet boundary conditions specify the pressure, temperature, and saturation at the boundary.
Neumann conditions specify the flux q at the boundary. Initial conditions may consist of specifying
a constant pressure or variable pressure, temperature, and saturation, for example in the form of
hydrostatic conditions taking into account the change in fluid density.
Typical boundary condition for Richard’s equation consist of infiltration (recharge) and constant
or time varying pressure conditions. More sophisticated conditions such at unit gradient, free
drainage, and seepage face are also used.

3.8 Reaction-Induced Porosity and Permeability Change

3.8.1 Porosity Changes

Porosity changes in matrix and fractures are directly tied to the volume changes as a result of min-
eral precipitation and dissolution. The molar volumes of minerals created by hydrolysis reactions
(i.e., anhydrous phases, such as feldspars, reacting with aqueous fluids to form hydrous minerals
such as zeolites or clays) are often larger than those of the primary reactant minerals; therefore,
constant molar dissolution-precipitation reactions may lead to porosity reductions.
The porosity, φ, of the medium (fracture or matrix) can be calculated from

φ = 1−
Nm�

m=1

φm, (3.27)

where Nm is the number of minerals, and φm is the volume fraction of mineral m in the rock (m3

mineral m−3 medium). As the volume fraction of each mineral changes due to mineral reactions,
the porosity can be recalculated at each time step.

3.8.2 Fracture Permeability Changes

Fracture permeability changes can be approximated using the porosity change and an assump-
tion of plane parallel fractures of uniform aperture (cubic law; Steefel and Lasaga (1994)). The
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modified permeability, k, is then given by

k = ki

�
φ

φi

�3

, (3.28)

where ki and φi are the initial permeability and porosity, respectively. This law yields zero perme-
ability only under the condition of zero fracture porosity.
In most experimental and natural systems, permeability reductions to values near zero occur at
porosities significantly greater than zero. This generally is the result of mineral precipitation in
the narrower interconnecting apertures. The hydraulic aperture, as calculated from the fracture
spacing and permeability (as determined through air-permeability measurements) assuming a cubic
law relation, is a closer measure of the smaller apertures in the flow system. Using the hydraulic
aperture, a much stronger relationship between permeability and porosity can be developed. This
relationship can be approximated as follows:
The initial hydraulic aperture δ0,h (m) is calculated using the following cubic law relation:

δ0,h = [12k0s]
1
3 , (3.29)

where k0 is the initial fracture permeability (m2) and s is the fracture spacing (m). The permeability
(k�) resulting from a change in the hydraulic aperture, is given by

k� =
(δ0,h +∆δ)3

12s
, (3.30)

where ∆δ is the aperture change resulting from mineral precipitation/dissolution.
The aperture change resulting from a calculated volume change can be approximated by assuming
precipitation of a uniform layer over the entire geometric surface area of the fracture, assuming
also that this area as well as the fracture spacing remains constant. The actual distribution of
mineral alteration is much more heterogeneous and depends on many processes that are active at
scales much smaller than the resolution of the model; however, the combined effect of the initial
heterogeneities and localized precipitation processes can only be treated through model sensitivity
studies and experiments.
For a dual permeability model, changes in the fracture porosity are calculated based on the porosity
of the fracture medium, so that ∆δ can be approximated by

∆δ =

�
φ�
fm − φfm,0

�

φfm,0
δg. (3.31)

3.8.3 Matrix Permeability Changes

Matrix permeability changes are calculated from changes in porosity using ratios of permeabilities
calculated from the Carman-Kozeny relation (Bear, 1972a), and ignoring changes in grain size,
tortuosity, and specific surface area as follows:

k = ki
(1− φi)2

(1− φ)2

�
φ

φi

�3

. (3.32)
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The simple cubic law (Equation (3.28)) and the Kozeny-Carman (Equation (3.32)) porosity-permeability
equations may not reflect the complex relationship of porosity and permeability in geologic media
that depends on an interplay of many factors, such as pore size distribution, pore shapes, and con-
nectivity (Verma and Pruess, 1988). Laboratory experiments have shown that modest reductions
in porosity from mineral precipitation can cause large reductions in permeability (Vaughan, 1989).
Detailed analysis of a large set of field data also indicated a very strong dependence of permeabil-
ity on small porosity changes (Pape et al., 1999). This is explained by the convergent-divergent
nature of natural pore channels, where pore throats can become clogged by precipitation while
disconnected void spaces remain in the pore bodies (Verma and Pruess, 1988). The permeability
reduction effects depend not only on the overall reduction of porosity, but on the details of the pore
space geometry and the distribution of precipitates within the pore space. These may be quite dif-
ferent for different media, which makes it difficult to achieve generally applicable predictions. To
evaluate the effects of a more sensitive coupling of permeability to porosity, we also implemented
an improved porosity-permeability relationship presented by (Verma and Pruess, 1988).

k

ki
=

�
φ− φc

φi − φc

�n

, (3.33)

where φc is the value of “critical” porosity at which permeability goes to zero, and n is a power
law exponent. Parameters φc and n are medium-dependent.

3.8.4 Effects of Permeability and Porosity Changes on Capillary Pressures

Permeability and porosity changes will likely result in modifications to the unsaturated flow prop-
erties of the rock. Changes to unsaturated flow properties are approximated by modification of
the calculated capillary pressure (pc) using the Leverett scaling relation (Slider, 1976) to obtain a
scaled p�c as follows:

p�c = pc

�
kiφ

kφi
. (3.34)
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4 Transport Processes

4.1 Overview

Transport is arguably the single most important process that needs to be accurately captured in
the Environmental Management modeling tool set. This is of course because the rate of transport
determines the rate at which contaminants migrate to the biosphere. In what follows, we use
”Transport” to refer to the set of physical processes that lead to movement of dissolved and solid
contaminants in the subsurface, treating the chemical and microbiological reactions that can affect
the transport rate through a retardation effect as a separate set of processes. The principal transport
processes to be considered are advection, dispersion, and molecular diffusion. In addition, we
consider electrochemical migration (Newman and Thomas-Alyea, 2004) as related to molecular
diffusion, although it could be potentially treated as a separate flux at the same level as the others.

4.2 Process Model Equations for Transport

Recall the equation for mass conservation can be written as

∂(φ
�

α[sαCα])

∂t
+∇ · J adv = ∇ · J disp +∇ · J diff +

�

i

Qi, (4.1)

where Jadv refers to the advective flux, Jdisp is the dispersive flux, Jdiff is the diffusive flux (often
grouped with the dispersive flux), and

�
i Qi is the summation of the various source terms (which

may include reactions).

Assumptions and Applicability. The principal assumptions associated with the transport pro-
cess models derive from the continuum treatment of the porous medium. Pore scale processes,
including the resolution of variations in transport rates within individual pores or pore networks
(Kang et al., 2006; Li et al., 2008), are generally not resolved, although some capabilities for treat-
ing multi-scale effects will be included in the HPC code. In general, it is assumed that within any
one Representative Elementary Volume (REV) corresponding to a grid cell all transport rates are
the same. It will be possible, however, to define overlapping continua with distinct transport rates,
as in the case where the fracture network and rock matrix are represented as separate continua.

Coupling Considerations. Transport processes may be tightly coupled to both flow and reaction
processes. In the case of flow, one important coupling is associated with the transport of chem-
ical constituents that affect the density of the solution, which in turn affects flow rates through
buoyancy.
In the case of chemical reactions, the coupling effect is normally very strong for reactive consti-
tutents. Chemical reactions may consume components present in the gaseous phase (e.g., CO2 or
O2), thus modifying the size of the phase itself. Or reactions can strongly modify gradients, and
thus transport rates, by either consuming or producing various chemical species.
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Multiscale Considerations. The multiscale nature of porous media and the transport processes
associated is arguably the most significant and largely unresolved challenge for simulation of fate
and transport in subsurface aquifers. Transport actually operates at the pore scale where varia-
tions in flow velocity and reaction rates can result in microscopic variability in transport rates.
Continuum treatments of transport in porous media cannot resolve such sub-grid variations easily,
although various upscaling techniques may be available for capturing the smaller scale behavior.
In addition, multi-continuum or hybrid approaches may obviate the need for a formal upscaling
procedure, although there are significant computational difficulties and expense associated with
their implementation.

4.3 Boundary Conditions, Sources and Sinks

A number of boundary conditions are possible for the diffusive flux, including a Dirichlet (or
first-type) boundary condition (fixed concentration), a Neuman (or second-type or flux) boundary
condition, and a Cauchy (or third-type) boundary condition.
First-Type or Dirichlet Boundary Condition: A first-type or Dirichlet condition involves specifica-
tion of a fixed value (typically) of the concentration, C0, at the boundary location,

y(0) = C0. (4.2)

Second-Type or Neuman Boundary Condition: A second-type or Neuman (or flux) boundary con-
dition involves specification of the derivative

∂C

∂x
(0) = α, (4.3)

where α is a prescribed value of the concentration gradient.
Third-Type or Robin Boundary Condition: A third-type or Robin boundary condition involves a
specification of the value of the function itself and its derivative, so

αC + β
∂C

∂n
= γ, (4.4)

where α and β are prescribed values of the function and its derivative, respectively.

4.4 Advective Transport

4.4.1 Overview

The advection process models are components of the subsurface transport capability. Advection is
the process where the bulk fluid motion transports mass and heat. In the simplest conceptualization
of advection, the mass of a component in a fluid parcel simply moves with the velocity of the fluid
parcel. This assumes there are no other processes (e.g., diffusion, dispersion, reactions) that can
affect the component concentration in the fluid parcel. There are, however, situations where the ad-
vection is modified by attributes of the transported mass and the pore structure. One is the potential
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for nonreactive anions to be repulsed by negatively charged solid surfaces into the center of pore
throats where the velocity is faster. Another is the advection of inorganic and organic colloids, and
microorganisms, whose movement can be affected by the geometry of pore throats. In addition to
being subject to the same physicochemical phenomena as abiotic colloids, microorganisms have
biological processes that can affect advection (e.g., temporal changes in surface properties due to
changes in metabolic state; chemotaxis; predation). We limit the discussion here to advection and
exclude the attenuation mechanisms and microbial behaviors that are discussed elsewhere. Thus,
advection can be a particulate or a dissolved species moving with the pore-water whose veloc-
ity is governed by the flow processes (discussed elsewhere). Continuum models have addressed
these behaviors using bulk parameterizations to characterize the pore-scale controls and control-
ling chemical gradients. Sufficiently high concentrations of these advected components can affect
the fluid properties which feedback to the flow processes.
The advection process can be modeled in isolation or as part of a transport process that includes
diffusion, dispersion, and transformation processes, the latter typically represented as sources and
sinks. Mathematically, advection is addressed in the divergence of mass fluxes across the surface of
a control volume, ∇·(uc), where the fluxes are the product of concentrations of a given component
and the fluid velocity at the control volume surface.
Numerical difficulties with the accuracy, robustness, and computation efficiency of modeling the
advection of moving steep concentration fronts, especially in complex velocity fields, are well
known. In some cases, there are constraints on the Peclet and Courant numbers for the useful
application of a given technique. Without going into those difficulties and techniques, we specify
the following requirements for the treatment of these issues.

4.4.2 Process Model Equations

Advection involves the translation in space of dissolved or suspended material at the rate of move-
ment of the bulk fluid phase. No modification of the shape of a front and no dilution occurs
when transport is purely via advection—a sharp front remains so when undergoing purely advec-
tive transport. The advective flux, Jadv, of a dissolved species in porous media can be described
mathematically as

Jadv = φsαvαCi, (4.5)

where φ is the porosity, sα is the saturation of phase α, and vα is the average linear velocity of the
phase, and Ci is the concentration of the ith species.

4.5 Dispersive Transport

4.5.1 Overview

Dispersion of a dissolved constituent refers to its spreading along tortuous pathways in a porous
medium caused by mixing effects. Dispersion takes place in the direction of the flow (longitudinal)
and normal to the flow (transverse). A conventional Eulerian Fickian representation of dispersion
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is assumed, which may be taken as the asymptotic limiting form of the dispersion tensor (Neu-
man, 1990). It should be noted that issues related to the scale dependence of dispersion are not
considered. While this approach is known to have several limitations, such as backward dispersion
against the direction of flow and scale independence, nevertheless it is still widely used in practical
applications. Furthermore, it may be the only approach for representing local scale dispersion.

4.5.2 Process Model Equations

The dispersion tensor takes different forms depending on whether the media is isotropic or anisotropic.

Isotropic Media. For an isotropic medium there is no preferred axis of symmetry the dispersion
tensor DH has the well-known form (Bear, 1972b)

DH = αTvI + (αL − αT )
vv

v
, (4.6)

where αL [m] and αT [m] refer to the longitudinal and transverse dispersivity, respectively, v [m/s]
denotes the average pore velocity with magnitude v, and I is the identity matrix.

Anisotropic Media. The dispersion tensor for anisotropic media has not received much attention,
However, it has been shown that in an axi-symmetric medium with axis of symmetry λs, the
dispersion tensor takes the general form (Lichtner et al., 2002)

DH = αH
T vI +

�
αH
L − αV

T + cos2θ
�
αV
L − αH

L + αV
T − αH

T

�� vv
v

+
�
αV
T − αH

T

�
v

�
λsλs −

cos θ

v
(λsv + vλs)

�
, (4.7)

where αH,V
L and αH,V

T refer to the longitudinal and transverse dispersivity in the horizontal and
vertical directions, and θ denotes the angle between the axis of symmetry and the flow velocity.

4.6 Diffusive Transport

4.6.1 Overview

Molecular diffusion is often indistinguishable from mechanical dispersion as a process operating in
porous media, and thus the two are often lumped together to form a hydrodynamic dispersion term.
Unlike dispersion, however, there is no effect of flow direction, so the potential difficulties associ-
ated with mismatches between flow and grid coordinate direction do not arise. Molecular diffusion
is an entropy-producing process in which the random motion of molecules causes spreading or
homogenization of a concentration field. Atomistic representations of molecular diffusion capture
this random motion, but continuum models of the kind considered here typically represent only
the average behavior of the molecules. It is noteworthy, however, that atomistic and continuum
models for molecular diffusion do agree if sufficiently long time scales with a sufficient number of
molecules are considered (Bourg et al., 2008).
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The principal distinctions in the treatment of molecular diffusion are between those based on Fick’s
Law, which states that the diffusive flux is linearly proportional to the concentration gradient,
and multicomponent treatments that take into account the buildup of electrostatic forces as the
individual charged species (ions) attempt to diffuse at their own rate. In addition, a full treatment
of molecular diffusion involves calculating fluxes in terms of gradients in chemical potential rather
than concentration (Steefel and Maher, 2009).
In addition to the complexities associated with chemical interactions, it is also necessary to account
for the effects of the porous medium through which diffusion occurs. Corrections to the diffusive
flux are often represented with a tortuosity (see Section 4.6.2 below) based on an upscaled constitu-
tive law intended to capture the heterogeneous pore geometries. Since diffusion may be restricted
or eliminated through narrow pore throats, the effective diffusivity for a specific ion may be quite
different from its diffusivity in water alone. Capturing the multiscale nature of the pore structure
and its effect on molecular diffusion remains a challenge.

4.6.2 Process Model Equations

General Formulation for Molecular Diffusion. The most rigorous and general expression for
molecular diffusion is given by

Jdiff
j = −∇(Ljiµj), (4.8)

where the Lji are the phenomenological coefficients introduced in the theory of irreversible ther-
modynamics (Lasaga, 1998; Onsager, 1931; Prigogine, 1968) and µj is the chemical potential of
the jth species. Here, the fluxes are linearly related to gradients in the chemical potentials of the
solutes rather than to their concentrations as in Fick’s Law that follows. The phenomenological
coefficients, Lji, can be linked back to measurable quantities by making use of the mobility as the
“velocity” of a particle acted upon by a force, with the force in this case provided by the chemical
potential rather than the concentration

Jdiff
j = −∇(ujCjµj), (4.9)

where uj is the mobility of the jth ion defined by

uj =
Di

RT
. (4.10)

Single Species Diffusion (Fick’s Law). Molecular diffusion is usually described in terms of
Fick’s First Law, which states that the diffusive flux is proportional to the concentration gradient

J i = −∇ (DiCi) . (4.11)

Di is referred to as the diffusion coefficient and is specific to the chemical component considered
as indicated by the subscript i. Fick’s First Law is a phenomenological theory for diffusion that
relates diffusion to the “driving force” provided by the concentration gradient, although it can also
be derived atomistically (Lasaga, 1998). In the case of diffusion in porous media, it is normally
necessary to include a tortuosity correction as well (see discussion below).
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Figure 1: Tortuous diffusion paths in porous media (Steefel and Maher, 2009)

Tortuosity. Since water-rock interaction commonly takes place in porous materials, it is impor-
tant to account for the effect of tortuosity (Figure 1), which is defined as the ratio of the path length
the solute would follow in water alone, L, relative to the tortuous path length it would follow in
porous media, Le (Bear, 1972b)

TL =
�
L/Le

�2
. (4.12)

In this definition of tortuosity (sometimes the inverse of Equation (4.12) is used), its value is always
< 1 and the effective diffusion coefficient in porous media is obtained by multiplying the tortuosity
by the diffusion coefficient for the solute in pure water.
With this formulation, the diffusion coefficient in porous media, D∗

i , is given by

D∗
i = TLDi. (4.13)

The diffusive flux, then, is given by

Jdiff
j = −∇ (φsαDjTLCj) = −∇

�
φsαD

∗
jCj

�
. (4.14)

An alternative formulation for the coefficient for molecular diffusion in porous media is given by
the formation factor, Ff , defined as (Bear, 1972b)

Ff =
1

φsα

�
Le

L

�2

=
1

φsα
TL, (4.15)

in which case the diffusive flux in porous media becomes

Jdiff
j = −∇

�
Dj

Ff
Cj

�
. (4.16)

Various approaches for calculating formation factors (and thus, the diffusion coefficient in porous
medium) are in use, with a formulation based on Archie’s Law being the most common for fully
saturated (single phase) systems

Ff =
1

aφm
, (4.17)

where a is a fitting constant and m is the cementation exponent.
For partially saturated systems, it is common to use the Millington-Quirk formulation (Millington
and Quirk, 1961; Moldrup et al., 2000; Sumner, Sumner)

D∗
i = φ4/3s10/3α Di, (4.18)

where the saturation, sα, can refer to either the gas or the aqueous phase.
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Multicomponent Diffusion and Electrochemical Migration. Fick’s First Law is strictly appli-
cable only in the case of an infinitely dilute solution with uncharged chemical species. In electro-
chemical systems or systems containing charged species, it is also necessary to consider an elec-
trochemical migration term. While this could be considered as a separate flux on the same level
as advection and diffusion, this effect is most commonly related to diffusion of charged species
at different rates. The full expression for the migration of a charged species in an electric field is
given by Newman and Thomas-Alyea (2004)

Jmigr
i = −ziuiFCi∇Φ, (4.19)

where zi is the charge of the species, ui is its mobility, F is Faraday’s constant (= 96,487 Coulombs-
/equivalent), and Φ is the electrical potential. The mobility refers to the average velocity of a
species in solution acted upon by a unit force, independent of the origin of the force. The flux of
charged species in an electric field gives rise to a current, which can be expressed as

i = F
�

i

ziJ i, (4.20)

where i is the current density in units of amperes per m2. Expanding Equation (4.20) in terms of
the migration term (Equation (4.19)) and the diffusive flux (Equation (4.11)), the current density
can be written as

i = −F 2∇Φ
�

i

z2i uiCi − F
�

i

zi∇(DiCi). (4.21)

Where no concentration gradients are present, the current is given by the first term on the right
hand side

i = −κe∇Φ, (4.22)

where
κe = F 2

�

i

z2i uiCi, (4.23)

is the conductivity of the solution. Note that using Equation (4.23), it is possible to determine the
mobility of an ion by measuring the conductivity of a solution. The mobility in turn can be used
to determine the diffusion coefficient for an ion from the Nernst-Einstein equation (Lasaga, 1998;
Newman and Thomas-Alyea, 2004)

Di = RTui, (4.24)

where R is the gas constant and T is the temperature on the Kelvin scale. Rearranging Equation
(4.21) to obtain an expression for the gradient in the electrical potential

∂Φ

∂x
= − i

κe
− F

κe

�

i

zi∇(DiCi), (4.25)

it is apparent that even in the absence of an electrical current, i, it is possible to have a gradient in
the electrical potential as a result of concentration gradients of charged species. The second term
on the right hand side of Equation (4.25) is known as the diffusion potential, which vanishes when

39 ascemdoe.org November 9, 2010



Process Model Mathematical Formulation Requirements

all of the diffusion coefficients for the charged species are the same. To proceed further, it is useful
to define the fraction of the current carried by a species j (or the transference number)

tj =
z2jujCj�
i z

2
i uiCi

, (4.26)

which can be used along with the substitution of Equation (4.25) and Equation (4.23) into Equation
(4.19) to obtain an expression for the migration flux

Jmigr
j =

tji

zjF
+

tj
zj

�

i

zi∇(DiCi). (4.27)

This equation (still only strictly applicable to relatively dilute solutions) can be used to describe the
case where an electrical current is present (e.g., an electrochemical cell), although more commonly
in fluid-rock interaction one encounters only the second term. Note that for corrosion problems,
the current cannot be neglected to the extent that cathodic and anodic corrosion sites need to be
resolved spatially. If the spatial scale of interest is larger than the scales separating the anodic and
cathodic sites, an explicit treatment of the electrical current is not needed.
In the absence of a current and advection, the total flux (combining Fickian diffusion and electro-
chemical migration) is then given by

J j = −∇(DjCj) +
tj
zj

�

i

zi∇(DjCj). (4.28)

As noted above, the second term vanishes when all of the diffusion coefficients for the charged
species are the same, but since this is in general not the case, this term should normally be retained
along with the first term. Note also that the effect of electrochemical migration may be important
even in dilute systems.
In the case where a gradient in chemical potential rather than concentration is used, the migration
flux (compare to Equation (4.27) in the absence of a current) becomes

Jmigr
j =

tj
zj

�

i

zi∇(Diµi). (4.29)

By writing the chemical potential as (Denbigh, 1981)

µj = µ0
j +RT ln(γjCj), (4.30)

where γj is the activity coefficient for the species, and differentiating with respect to x, we obtain
the following combined expression for the pure diffusive flux and electrochemical migration by
making use again of the definition of the ion mobility (Equation (4.10))

J j = −∇(DjCj)−∇(DjCj ln γj) +
tj
zj

�

i

zi∇(DiCi) +
tj
zj

�

i

zi∇(Diγi). (4.31)

This more general expression, which reduces to Equation (4.28) where gradients in activity coef-
ficients are negligible (for example, for diffusion of a trace species in a strong electrolyte), makes
clear that both the diffusive and electrochemical migration fluxes can depend on the activity coeffi-
cients for the species. If gradients in one or more activity coefficients are negative, it is possible for
“uphill diffusion”, in which a species diffuses up its own concentration gradient, to occur (Lasaga,
1998).
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4.6.3 Data Needs

For modeling of molecular diffusion in porous media, two kinds of data are needed:

1. Experimental data on the diffusivities of individual ions in aqueous solution;

2. Characterization of the tortuosity of the porous medium under consideration. The tortuos-
ity of the medium may be determined by a number of methods, including transport experi-
ments involving tracers (Navarre-Sitchler et al., 2009), 2) microscopic imaging of the porous
medium using synchrotron X-ray or related methods (Navarre-Sitchler et al., 2009), or esti-
mation based on grain size and mineralogy of the materials. In addition, it may be possible
to determine tortuosity from effective diffusion coefficients determined in field-scale exper-
iments.

For the diffusivities of individual ions, there are some compilations in the literature (Lasaga, 1998;
Steefel and Maher, 2009). While the diffusivity of individual ions could in theory be calibrated
from field tests, normally they should be determined independently so that a more accurate deter-
mination of the tortuosity can be carried out.
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5 Biogeochemical Reaction Processes

A range of biogeochemical reaction processes may be included in the HPC Simulator, including
multicomponent aqueous complexation, sorption (including simple linear distribution coefficient,
or Kd, and more complex multicomponent and multisite surface complexation and ion exchange
models), mineral dissolution and precipitation, and microbially-mediated reactions.

5.1 Aqueous Complexation

5.1.1 Overview

It is customary to treat the reaction network corresponding to the homogeneous reactions in the
aqueous phase as a distinct set of processes taking place within a single aqueous phase (Steefel and
MacQuarrie, 1996), although these can also be described within the same more general formalism
provided in Section 2 that includes multiphase reactions. This reaction network is sometimes re-
ferred to as aqueous complexation, since it involves reactions between individual dissolved species
to form complexes.

5.1.2 Process Model Equations

Equilibrium Reactions. If we assume that the various aqueous species are in chemical equilib-
rium, it is possible to reduce the number of independent concentrations, that is, the number that
actually need to be solved for. Mathematically, this means that in a system containing Ntot aque-
ous species, the number of independent chemical components in the system Nc is reduced from
the total number of species by the Nx linearly independent chemical reactions between them (for
further discussion, see Aris (1965); Bowen (1968); Hooyman (1961); Kirkner and Reeves (1988);
Lichtner (1985); Reed (1982); Van Zeggeren and Storey (1970). This leads to a natural partition-
ing of the system into Nc primary or basis species, designated here as Cj , and the Nx secondary
species, referred to as Ci (Kirkner and Reeves, 1988; Lichtner, 1985; Reed, 1982). The equilibrium
chemical reactions between the primary and secondary species take the form

Ai �
Nc�

j=1

νijAj (i = 1, ..., Nx), (5.1)

where the Aj and the Ai are the chemical formulas of the primary and secondary species respec-
tively and νij is the number of moles of primary species j in one mole of secondary species i. It
should be noted here that the partitioning between the primary and secondary species is not unique,
that is, we can write the chemical reactions in more than one way. The equilibrium reactions pro-
vide an algebraic link between the primary and secondary species via the law of mass action for
each reaction

Ci = K−1
i γ−1

i

Nc�

j=1

(γjCj)
νij (i = 1, ..., Nx), (5.2)

where γj and γi are the activity coefficients for the primary and secondary species respectively,
and the Ki are the equilibrium constants of the reaction given in Equation (5.2), written here as the
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destruction of one mole of the secondary species. Equation (5.2) implies that the rate of production
of a primary component j due to homogeneous reactions, Raq

j , can be written in terms of the sum
of the total rates of production of the secondary species (Kirkner and Reeves, 1988)

Raq
j = −

Nx�

i=1

νijI
aq
i , (5.3)

where Iaqi are the reaction rates of the secondary species in the aqueous phase. Equation (5.3)
suggests that one can think of a mineral dissolving, for example, as producing only primary species
which then equilibrate instantly with the secondary species in the system. Using Equation (5.3)
and neglecting transport for the sake of simplicity here, the rates of the equilibrium reactions can
be eliminated (Steefel and MacQuarrie, 1996)

∂

∂t

�
φswρw

�
Cj +

Nx�

i=1

νijCi

��
= Rmin

j (j = 1, ..., Nc), (5.4)

where sw and ρw refer to the saturation and mass density of the aqueous phase, respectively. Note
that only the term Rmin

j remains on the right hand side of Equation (5.4) because we have assumed
that they are the only kinetic reactions.

Definition of a Total Concentration. If a total concentration, Ψj , is defined as (Kirkner and
Reeves, 1988; Lichtner, 1985; Reed, 1982)

Ψj = Cj +
Nx�

i=1

νijCi, (5.5)

then the governing differential equations can be written in terms of the total concentrations in the
case where only aqueous (and therefore mobile) species are involved (Kirkner and Reeves, 1988)

∂

∂t
(φswρwΨj) +∇ · [φswρwvwΨj −D∇ (φswρwΨj)] = Rmin

j (j = 1, ..., Nc), (5.6)

where vw is the velocity of the aqueous phase. As pointed out by Reed (1982) and Lichtner (1985),
the total concentrations can usually be interpreted in a straightforward fashion as the total elemental
concentrations (e.g., total aluminum in solution), but in the case of H+ and redox species, the total
concentration has no simple physical meaning and the total concentrations may take on negative
values. Such quantities, however, do appear occasionally in geochemistry, the best example of
which is alkalinity. In fact, the alkalinity (which may take on negative values) is just the negative
of the total H+ concentration where CO2(aq) or H2 CO3 is chosen as the basis species for the
carbonate system.
Note that the total concentration is generally only a useful concept computationally where equilib-
rium reactions allow the definition of secondary species described with Equation (5.3). In the case
where the reactions among aqueous species are described kinetically, then the various aqueous
complexes cannot be eliminated algebraically and they have to be solved for individually.
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Kinetic Aqueous Reactions. If the aqueous phase reactions are not sufficiently fast for a given
time scale of interest that they reach equilibrium, then they must be treated kinetically by solving
an ordinary differential equation. A convenient way to represent the reactions is with a Transition
State Theory (TST) type of rate law (Aagaard and Helgeson, 1982; Lasaga, 1981, 1984)

Iaqj = kaq
+

�
Qaq

Kaq

��
ani , (5.7)

where kaq
+ is the rate constant for the aqueous reaction, Qaq is the ion activity product , Kaq is the

corresponding equilibrium constant, and ai are the activities of the species affecting the rate far
from equilibrium raised to the power n.
Alternatively, the reactions can be considered as completely irreversible, in which case there is no
back reaction. A good example is radioactive decay. The reactions are assumed to take the form

Iaqj = kaq
+

�
ani , (5.8)

and are therefore similar to the TST form except that a dependence on the saturation state is miss-
ing.

5.2 Aqueous Activity Coefficients

5.2.1 Overview

This Toolset includes models for thermodynamic activity coefficients in aqueous solutions. Multi-
ple models, each with its own set of parameters and limitations, will be provided. In general, the
toolset user must choose one such model to use in a given modeling application. In setting up to
run the application, the user must ensure that a matching database with the requisite model-specific
parameters is provided to support the run.
A key solution parameter associated with aqueous species activity coefficients is the ionic strength,
defined as

Ī =
1

2

�

i

miz
2
i . (5.9)

Here mi denotes the molal concentration (molality) of the ith solute species and zi denotes its
electrical charge number. Activity coefficients of charged solute species include a functional de-
pendence on the ionic strength. The exact nature of this dependence depends on the specific model.
Activity coefficient models can be classified as to the upper limit of ionic strength to which a
given model provides generally satisfactory results. For the most part, there are two kinds of such
models. Low ionic strength models are generally usable up to an ionic strength of more or less 1
molal. Examples include the Davies equation and the B-dot equation. These models are based on
simple equations and have a relatively small number of associated parameters. High ionic strength
models are usable to very high ionic strength (>20 molal). The highest values of ionic strength
normally seen are limited by the solubilities of highly soluble salts, such as calcium chloride and
calcium nitrate. Examples of high ionic strength models include Pitzer’s equations and Extended
UNIQUAC. High ionic strength models have more complex equations and require substantially
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more parameters than low ionic strength models. They are most likely to be applied to problems
in which the ionic strength is higher than 1 molal. At low ionic strength, it is generally preferable
to use a low ionic strength model, because the number of required parameters is smaller. In many
instances, there will be sufficient supporting data available to support the use of low ionic strength
models for large numbers of chemical components and species, but that may not be the case for the
high ionic strength models. There are activity coefficient models that extend to intermediate ionic
strength (4-6 molal). The NEA SIT model is an example. These models tend to be intermediate in
equation complexity and number of required parameters. They have not received much attention
to date in modeling geochemically complex systems.
It is noted that low ionic strength models are sufficient for many EM applications. Hanford tanks
and the WIPP site pose notable exceptions, requiring the use of high ionic strength models. There
may be other instances in which the use of low ionic strength models may be inappropriate.
There are two kinds of activity coefficients that a model should be able to provide. The first is the
molal activity coefficient of a solute species (denoted by γi). This is subsequently used to compute
the thermodynamic activity of the corresponding species (denoted by ai). The activity of a species
is obtained by multiplying the molality (molal concentration) of the species (denoted by mi) by
the molal activity coefficient:

ai = miγi. (5.10)

This activity is then used in various equations describing thermodynamic equilibrium and chemical
kinetics.
The second kind of activity coefficient, the rational activity coefficient, pertains to the solvent,
water (w). Its activity coefficient is denoted by λw to emphasize that it is different in kind: it
is a mole fraction activity coefficient. The thermodynamic activity of water (aw) is obtained by
multiplying the mole fraction of water (Xw) by the activity coefficient of water:

aw = Xwλw. (5.11)

The activity of water is also different in kind from the activity of a solute species (a mole fraction
activity as opposed to a molal activity). In treating the thermodynamics of aqueous electrolyte
solutions, the activity of water and the activity of a solute species are almost always treated as
described above.
Activity coefficients are generally first calculated in logarithmic form (e.g., ln γi or log γi). In
practical usage, activity coefficients are used most often used in base-10 logarithmic form, being
converted from natural logarithm form as necessary. The conversion is illustrated by

log γi =
ln γi
ln(10)

. (5.12)

The conversion factor ln(10) is approximately equal to 2.303, and this value often appears in
equations in the literature in place of the exact factor. The approximate value should not be used in
this toolset, as it is insufficiently precise for accurate work. Instead the value should be calculated
using the same floating-point precision that will be used to calculate activity coefficients. This is
most efficiently done by calculating the value once and then storing it for subsequent use. It is noted
that “log” is somewhat ambiguous, in that the literature contains examples of it being used for both
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natural and base-10 logarithms. In the present description given in this section (Section 5.2), it will
always refer to the base-10 logarithm.
Activity coefficient model equations ideally satisfy thermodynamic consistency relations. The
value of consistency lies in allowing the possibility of accuracy at higher ionic strengths. Low
ionic strength models typically include inconsistent equations, but the numerical consequences of
the inconsistencies tend to be acceptable in the range of applicability of these models. For elec-
trolyte solutions, Wolery (1992b) presents equations and methods for ensuring the development
of consistent equations and for testing the consistency of existing sets of equations. The easiest
means of testing for consistency is to use the cross-differentiation rule, which takes the following
forms for solute-solute and solvent-solute pairs:

∂ ln γj
∂mi

=
∂ ln γi
∂mj

, (5.13)

Nkg
w

∂ ln aw
∂mi

= −1−
�

j

mj
∂ ln γi
∂mj

(5.14)

where i and j denote different solute species and Nkg
w is the number of moles of water in a 1 kg

mass (approximately 55.51).

5.2.2 The Debye-Hückel Equations

Activity coefficient model equations for electrolyte solutions generally include some type of Debye-
Hückel term to represent the effects of long-range electrical forces. The most common represen-
tation is based on the “extended” Debye-Hückel equation, which for the activity coefficient of an
ionic solute species is given by

log γi = −Aγ,10z
2
i

� √
Ī

1 + b
√
Ī

�
. (5.15)

Here Aγ,10 is the Debye-Hückel “A” parameter for the activity coefficient (hence the subscript “γ”),
modified for consistency with the base-10 logarithmic activity coefficient on the left-hand-side of
the equation (hence the additional subscript, “10”). To assist in avoiding potential confusion, Aγ,10

should have a value of 0.5114 at 25◦C and 1.013 bar pressure. The parameter “b” is conceptually
the product of the Debye-Hückel “B” parameter for the activity coefficient (Bγ) and a length that
corresponds to either the diameter of the ion in question or a characteristic distance of closest
approach to itself or any other ion in solution. Practical models treat this in various ways. Some
assign a constant value, typically 1.0, 1.2, or 1.5. Others use the product of Bγ (which has a known
temperature and pressure dependence) and some sort of length parameter.
The equation for the activity of water corresponding to the extended Debye-Hückel equation is

log aw =
1

Nkg
w

�
−
�

i mi

ln(10)
+

2

3
Aγ,10Ī

3/2ς(b
�
Ī)

�
. (5.16)

where the summation over molalities spans all solute species (all aqueous species except the sol-
vent), and the function ς(x) in Equation (5.16) is given by

ς(x) =
3

x3

�
1 + x− 1

1 + x
− 2 ln(1 + x)

�
, (5.17)
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where x serves the purpose of a generic variable. If the activity coefficient of water is desired, it
can be obtained from the relation

log λw = log aw − log(Xw), (5.18)

where the mole fraction of water is given by

Xw =
Nkg

w

Nkg
w +

�
i mi

. (5.19)

The activity of water is closely related to the osmotic coefficient, ϕ:

ϕ = −
�

Nkg
w�
i mi

�
ln aw. (5.20)

All forms of the extended Debye-Hückel equation are consistent with the Debye-Hückel Limiting
Law (DHLL):

lim
Ī→0

log γi = −Aγ,10z
2
i

�
Ī . (5.21)

The limiting law is a critical feature describing the behavior of ionic activity coefficients in the
range of very low ionic strength. The ionic activity coefficient plunges rapidly from unity as ionic
strength increases from zero. There is no comparable limiting relation for the activity of water, due
to the compositional dependence on both the ionic strength and the sum of solute molalities.
In general, the extended Debye-Hückel equation is not useful for significant practical modeling,
as it is accurate only in very dilute aqueous solutions. If only monovalent ions are present, it may
be useful for Ī < 0.1 molal. In the presence of higher valence ions, the maximum range becomes
more compressed. Most practical models therefore extend the “extended” Debye-Hückel equation
by adding additional terms or otherwise adding to the mathematical complexity, in the process
introducing more model parameters.
The activity coefficient models that will be available in this toolset include the Davies equation,
the B-dot equation, Pitzer’s equations, Extended UNIQUAC, and NEA-SIT. The models are first
addressed, followed by the discussion on rescaling the activity coefficients.

5.2.3 The Davies Equation

The Davies (1962) equation is a commonly used at low ionic strength (less than about 1 molal)
model. The activity coefficient of an aqueous solute species is given by

log γi = −Aγ,10z
2
i

� √
Ī

1 +
√
Ī
− dĪ

�
. (5.22)

Here d is a constant, either 0.2 as in EQ3/6 (Wolery, 1992a) or 0.3 as in PHREEQC (Parkhurst and
Appelo, 1999). If the “dĪ” part is dropped, this equation reduces to the extended Debye-Hückel
form with b set to unity. It can be shown that the full equation satisfies the solute-solute-form of
the cross-differentiation rule.
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For the activity coefficient of water, the matching equation used in EQ3/6 for the activity of water
is

log aw =
1

Nkg
w

�
−
�

i mi

ln(10)
+

2

3
Aγ,10Ī

3
2 ς(

�
Ī)− dAγ,10Ī

2

�
. (5.23)

where all parameters and the ς(x) function have been previously introduced (See Section 5.2.2).
This equation is a corrected version of that given by Wolery (1992a) (Equation 86 in that docu-
ment). Here a factor of 2 in the “d” term has been removed, and d substitutes for the original
constant value of 0.2. This equation is quasi-consistent with the equation for the activity coeffi-
cient of a solution species, in the sense that the solvent-solute form of the cross-differentiation rule
is satisfied for the case of a pure solution of a uni-univalent electrolyte, such as sodium chloride. It
does not satisfy this rule in the general case.
The equation used by PHREEQC is symbolically equivalent to

aw = 1− 1

Nkg
w

�

i

mi. (5.24)

As given by the source (Parkhurst and Appelo, 1999, p. 17), the factor 1/Nkg
w is replaced by a con-

stant value of 0.017, which is rather approximate, and the molality is replaced by the mole number
divided by the number of kg of solvent water (this substitution is exact). This equation is based on
ignoring the activity coefficient of water and replacing the mole fraction with a limiting approxi-
mation of itself. Hence, the activity of water is given in direct form, rather than logarithmically.
For the present toolset, it is recommended that the Davies model be implemented as two options,
one (Davies-EQ3/6) consistent with the implementation in EQ3/6, the other (Davies-PHREEQC),
with PHREEQC. This will permit direct comparison with both codes.
The Davies equation predicts a unit activity coefficient for electrically neutral solute species. This
is known to be generally inaccurate, as the activity coefficients of non-polar neutral solutes such as
O2(aq) and N2(aq) should increase with ionic strength (the “salting out” effect), while the activity
coefficients of polar species such as CaSO4(aq) and MgSO4(aq) should decrease (“salting-in”).
In practice, the Davies equation is mainly used for low temperatures (near 25◦C) and near-atmospheric
pressures. The Aγ,10 parameter has temperature and pressure dependence. As long as this is ac-
counted for, the Davies equation model could be applied in principle at higher temperatures and
pressures. However, it needs to be kept in mind that the 0.2 constant was obtained by fitting data
to solutions for temperature near 25◦C and for atmospheric pressure. The accuracy of the model is
therefore likely to deteriorate at higher temperatures and pressures.

5.2.4 The B-dot Equation

The B-dot equation of Wolery (1969) is an alternative low ionic strength model. The activity
coefficient of a solute species is given by

log γi = − Aγ,10z2i
√
Ī

1 + åiBγ

√
Ī
+ ḂĪ. (5.25)

where åi is the diameter of the ith solute species, Bγ is the Debye-Hückel B parameter for the
activity coefficient, and Ḃ is the “B-dot” parameter. Removing the ḂĪ term and setting åBγ to
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unity, this equation reduces to the Davies equation with the dĪ term omitted. Comparison with the
Davies equation brings up two points. The first is that the B-dot model has more parameters. The
Bγ parameter appears, and each solute species has an assigned diameter. The “B-dot” parameter
itself is an additional parameter.
It can be shown that the B-dot equation does not satisfy the solute-solute form of the cross-
differentiation rule. There is an issue with the first term on the right hand side in that the rule
can only be satisfied if all aqueous ions have the same diameter. There is an issue with the second
term in that the rule is only satisfied if the charge number squared is the same for all ions, as would
be the case for example in a pure sodium chloride solution.
For an electrically neutral species, the B-dot equation reduces to

log γi = ḂĪ. (5.26)

As the Ḃ parameter is generally assigned a positive value, this would provide for some measure
of “salting-out.” By tradition, however, the B-dot equation is not applied to neutral solute species,
and it will not be so applied in the present toolset. For non-polar neutral species, the common
practice is to assign an approximation for the activity coefficient of CO2(aq) in otherwise pure
sodium chloride solution of the same ionic strength. The approximation used in EQ3/6 (based on
S. E. Drummond (1981), and which will be adopted for the present toolset) is

ln γi =

�
C + FT +

G

T

�
I − (E +HT )

�
Ī

Ī + 1

�
. (5.27)

Here T is the absolute temperature and C = -1.0312, F = 0.0012806, G = 255.9, E = 0.4445, and
H = -0.001606. Note that the result is presented in terms of the natural logarithm. For a polar
aqueous species, the EQ3/6 practice (which will be adopted in the present toolset) is to use

log γi = 0. (5.28)

Because different equations are used for electrically neutral solute species than for ionic species,
there is necessarily an additional set of violations of the solute-solute cross-differentiation rule.
For the activity of water, the B-dot model as implemented in EQ3/6 (and recommended for the
present toolset) is to use the equation

log aw =
1

Nkg
w

�
−
�

i mi

ln(10)
+

2

3
Aγ,10Ī

3
2σ(̊aBγ

�
Ī)− ḂĪ2

�
. (5.29)

All the parameters here have been introduced previously, except for the unsubscripted å, which is
conceptually an effective solute species diameter. In practice, this is assigned a constant value of
4.0 angstroms.
The above equation for the activity of water is quasi-consistent with the solvent-solute form of
the cross-differentiation rule. The term containing the effective solute diameter leads to inconsis-
tency unless every ionic solute has a matching diameter value. The term containing Ḃ leads to
inconsistency unless the solution is a pure solution of a uni-univalent electrolyte such as sodium
chloride.
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The thermodynamic inconsistencies noted above introduce some level of inaccuracy into the model,
tending to negate the improvement that might be expected by introducing more parameters (e.g.,
a diameter value specific to each solute species). Thus, for temperature near 25◦C and near-
atmospheric pressure, the B-dot model is probably as good as the Davies equation model.
The B-dot model does have an advantage over the Davies equation model in that it is better pa-
rameterized to cover a wide range of temperature and pressure. In addition to Aγ,10, the Bγand
Ḃ parameters are treated as functions of temperature and pressure. The Aγ,10 and Bγ parameters
have values derived from pure theory (and models for pure water properties). The Ḃ parameter is
obtained by fitting to data for pure sodium chloride solutions. The ion size parameters are treated
as constant with respect to temperature and pressure.
In regard to solute species, diameters are only necessary for ionic species. Some means needs to
be provided to specify (as on a supporting thermodynamic data file) whether a neutral species is
to be treated as non-polar or polar. All the necessary information could be folded into a diameter
array or equivalent structure, in which the values in the case of neutral species would not be ac-
tual diameters, but code values specifying non-polar or polar type. However, a separate flagging
structure should be utilized, as the variable type can then be something more appropriate (integer
or logical) than the floating point necessary for actual diameters. Also, the structure for diameters
would then be free to include diameters for neutral solute species. Although such diameters are
not be used in the B-dot model, they might be usable in other models.
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5.2.5 Pitzer’s Equations

At the present time, models of activity coefficients in high ionic strength solutions are most com-
monly based on Pitzer’s equations (Pitzer, 1973, 1991). The basic approach is to extend a Debye-
Hückel representation of long-range electrical forces with a virial (interaction coefficient) expan-
sion, accounting for interactions among solute species pairs and triplets. A characteristic of the
Pitzer equations is an ionic strength dependence of the pair interaction parameters. Modern forms
of the Pitzer equations also include a theoretical accounting of higher-order electrical interactions
(Harvie et al., 1984; Pitzer, 1975), which is described in terms of pair interactions for certain kinds
of pairs of solute ions. However, the pair and triplet interactions are mainly described by param-
eters obtained by fitting to experimental data, as for osmotic coefficients of solutions of single
aqueous electrolytes and pairs of aqueous electrolytes sharing a common ion, and for solubilities
of various salt minerals.
The Pitzer equations themselves only provide a mathematical framework. That exists in two prin-
cipal forms, the original one based on expansion in molalities, and a later one based on expansion
in mole fractions (Pitzer and Simonson, 1986). The latter approach solves some problems in the
region in which solutions become so concentrated that solvent water is not abundant relative to
solute species. It is less commonly applied and fitted parameter data are consequently less abun-
dant. It is likely to be necessary only in limited circumstances, such as when there is a co-solvent
such as ethanol which can be much more abundant than water or where there is a solution that is
effectively a slightly hydrous molten salt. The mole fraction form might be considered for future
addition to the toolkit if future applications warrant. At the present time only the molal form will
be addressed for inclusion as an option in the toolkit.
The Pitzer equations are derived using a mathematical approach that, in the absence of mistakes in
partial differentiation, guarantees that the relevant consistency relations are satisfied (see Wolery
1992b). Because these equations are a basis for high ionic strength modeling, this consistency is a
necessary (but not necessarily sufficient) component to achieving accurate results.
Because the Pitzer approach is based on fitting experimental data, a model per se only follows
when the equations are fit to experimental data. There is some variation in Pitzer-based models
owing to choices of experimental datasets and dataset weighting. Some variation is associated
with the exact choice of value for the Debye-Hückel Aφ parameter (which is related to, but not
the same as, the Aγ,10 parameter discussed previously). This occurs because the values of fitted
parameters depend on the value of Aφ used in the fitting. A second source of variation comes
from the assumed set of solute species present. For example, a calcium chloride solution can be
modeled assuming only Ca2+ and Cl−, or with additional species such as CaCl+ or CaCl2(aq).
Additional species present additional interaction parameters, and require adjustments to the other
relevant parameters not involving the additional species (e.g., including CaCl+ requires adjusting
the pair interaction parameters for Ca2+ and Cl− from the values appropriate when not including
the ion pair). In general, the practice of developing Pitzer models (and other high ionic strength
models) has been to minimize the number of species considered. Thus, typical high ionic strength
models do not include many of the ion pair and complex species that are often present in low ionic
strength models. A third source of variation is that in some instances the available experimental
data are insufficient to obtain a unique fitting to the set of relevant fitting parameters. In such cases,
some parameters may be arbitrarily assigned a value of zero. This is especially likely when ion
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pair and complex species are included in the model. An additional factor in variation has to do
with the description of the temperature dependence of the model parameters, as different more or
less arbitrary functions are used for this purpose.
The more extensive Pitzer model databases are divided into two types. Models which only pertain
to a temperature of 25◦C are almost all built using as a core the model of Harvie et al. (1984) for the
Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system at this temperature. The Harvie model
is notable because it provided the first integrated description in the Pitzer framework of activity
coefficients and mineral solubilities for a reasonably large geochemical system. Prior works had
mainly focused on describing measurements of the osmotic coefficient (related to the activity of
water) in pure liquid systems, or touched on the solubility of minerals in more limited systems. The
Harvie et al. (1984) model is often supplemented with the borate extension of Felmy and Weare
(1986). Various extant low temperature databases (including the WIPP thermodynamic database)
include other extensions.
Some Pitzer databases extend to higher temperature. Most of these include as a core the model
of Greenber and Moller (1989) for the system Na-K-Ca-Cl-SO4-H2O , which covers the range 0-
250◦C. This work also addresses mineral solubilities. The model of Pabalan and Pitzer (1987)
for the system Na-K-Ca-Mg-Cl-SO4-OH-H2O extending to high temperature (˜300◦C in at least
some parts) also directly addresses mineral solubilities and is equally notable. Various extant high
temperature Pitzer databases include one or both of these (e.g., the Yucca Mountain Project Pitzer
database, a Hanford tanks database), usually supplemented with additional data.
A point to be made is that combining data from different sources may lead to inconsistencies.
In constructing and maintaining databases, it may be necessary to at least evaluate if not correct
inconsistencies. In some instances, the data must be reformulated to follow a common format,
such as a common temperature function or for consistency with say a slightly different value of the
Aφ parameter.
In general, there is a small inconsistency between low temperature (25◦C) and high temperature
Pitzer databases in that virtually all low temperature work uses the Aφ value of 0.392 originally
used by Harvie et al. (1984) (who incorrectly reported a value of 0.39, see Plummer et al. (1988)
or Plummer and Parkhurst (1990)). Temperature functions describing Aφ generally yield a value
close to 0.391 when evaluated at 25◦C. It has been shown (Plummer and Parkhurst, 1990; Plummer
et al., 1988) that small differences in this parameter can be significant in the computation of mineral
solubilities. The parameter itself appears not only in the Debye-Hückel part of the model equations,
but also in the theory-based part describing higher-order electrical interactions.
The Pitzer models addressed here only describe activity coefficients and their temperature depen-
dence. It is noted that volumetric property models based on the Pitzer framework (e.g. Kumar,
1986; Monnin, 1989) do exist. These models can provide the solution density as a function of
detailed composition. The data for such models is in principal the same as that required to calcu-
late the pressure dependence of the activity coefficients. Similarly, enthalpic properties are also
treatable within the larger Pitzer framework (cf. Pitzer, 1991). However, there are relatively few
applications addressing the volumetric and enthalpic properties, and most modeling codes ignore
them or use simplified approximations for a few key necessary items (e.g., estimate the density of
brine by substituting the density of a sodium chloride solution having the same total dissolved salt
content).
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The ideas behind Pitzer’s equations are relatively simple. The mathematical development (Pitzer,
1973, 1991) begins with writing an expression for the excess Gibbs energy. This consists of a
Debye-Hückel term and a virial expansion in the mole numbers of solute species that is truncated
at third order. The expansion includes only second and third order terms; first order terms are
excluded because the excess Gibbs energy is an extensive thermodynamic quantity and so must
be described by a zero-th order homogeneous equation. The expansion includes second and third
order virial coefficients (respectively represented by λij and µijk, where i, j, and k each span the
set of aqueous solute species). In the general form, a species may be repeated in a pair or triplet
subscripting. There are no virial terms or coefficients involving the solvent, water, because the
excess Gibbs energy must be zero when the solution consists of pure water. Expressions for the
solute activity coefficient and the osmotic coefficient (which is closely related to the activity of
water, see below) are derived using pertinent partial differentiation (Pitzer, 1973, 1991; Wolery,
1992b).
A key aspect of the Pitzer approach is that second order virial coefficients for ionic interactions
are treated as functions of ionic strength. This is responsible for much of the success of the ap-
proach compared to prior approaches incorporating virial expansion. A distinguishing feature of
the Pitzer model is its usage of the Debye-Hückel-osmotic (DHO) model as opposed to the more
familiar Debye-Hückel-charging (DHC) model, which is incorporated for example in the Davies
(1962) equation and the B-dot equation (Wolery, 1969). This substitution probably has little to
do with the success of the Pitzer model, but it is a characteristic. Pitzer (1975) modified the orig-
inal 1973 model by including a theoretical description of higher order electrostatic effects. This
was incorporated in the form of adding a theoretical component to the pair interactions for ions
of the same charge sign but different charge number (e.g., Na+, Ca2+). All modern work with
Pitzer’s equations includes this modification. The modification includes a representation of the
J(x) and J’(x) functions (see below), which are defined by integral equations and consequently are
represented by numerical approximations for the sake of rapid, practical calculation. Pitzer (1975)
presented some suggested formulas. However, all modern work utilizes the approximation devel-
oped by Harvie (1981). The use of older approximations may lead to noticeable inconsistencies.
The actual practical equations for the Pitzer model are fairly complex. Much of the complexity
results from the fact that electroneutrality requires that many of the theoretical virial coefficients
are only observable in certain combinations. These combinations have been effectively defined
as the set of practical interaction coefficients, and are mostly represented by additional symbols.
The original λij and µijk coefficients only carry through for some species combinations involving
neutral solute species. The various types of practical interaction coefficients give rise to different
types of summations in the equations for solute activity coefficients and for the osmotic coefficient
(or the activity or activity coefficient of water).
The Pitzer notation deserves some comment, as it may otherwise be confusing. There are several
instances in which superscript symbols are used as labels, not exponents. Examples include the su-
perscript φ in the interaction coefficient Cφ

ca and the pre-superscript E in the interaction coefficient
(actually function) Eθcc� . Although φ is used as a label, it is also used to symbolize the osmotic
coefficient. The usage as label traces to actual and historical ties to equations for or closely related
to the osmotic coefficient.
The coding of Pitzer’s equations poses its own difficulties. This task is much more difficult than
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coding the Davies equation or the B-dot model. One fundamental issue is how to store the relevant
data. Consider a parameter that goes with a cation-anion pair. Should the data be stored in a 2-D
matrix (cations by anions)? Or should each cation-anion pair for which non-zero data exists be
treated as the fundamental entity, and relevant lists be constructed identifying the pair members
and giving the corresponding parameter values? This issue must be addressed multiple times,
and there are multiple types of interaction coefficients and associated parameters. The types of
data are associated with certain summations (singe, double, and triple) in the equations for the
activity coefficients, and the issue of data storage is necessarily tied to the most efficient means of
evaluating the summations. This is not trivial. Also, because of the complexity, it is difficult to
avoid errors. Consequently, careful code-to-code validation will be necessary.
The types of Pitzer model data are listed in Tables 2-3. Table 2 summarizes the practical interaction
coefficients. All of these coefficients may potentially be treated as functions of temperature and
pressure (see below). The coefficients β(0)

ca , β1
ca, β

2
ca, C

φ
ca describe cation-anion interactions. β2

ca is
only used for certain cation-anion pairs (as will be noted below). These coefficients are generally
obtained by regressing osmotic coefficient data for binary systems consisting of the solvent water
and a single aqueous electrolyte, such as NaCl. The coefficients Sθcc� and Sθaa� respectively de-
scribe (in part, see below) the interactions between a cation (c) and a different cation (c’), or an
anion (a) and a different anion (a’). These coefficients are most often tabulated omitting the pre-
superscript S (for “short range”). The coefficients ψcc�a and ψcc�a respectively describe interactions
among a cation, a different cation, and an anion, and an anion, a different anion, and a cation. Other
parameters involve neutral solute species (n). The coefficients λnc and λna respectively describe
neutal-cation and neutral-anion second order interactions. These represent the curious case of the-
oretical λ coefficients that cannot be combined into an equivalent practical interaction coefficient,
but which still cannot be determined one in the absence of the other. It is necessary to establish
some convention for their practical use. Harvie et al. (1984) adopted the convention that

λn,H+ = 0. (5.30)

The usual alternative (e.g. Clegg and Brimblecombe, 1990) is

λn,Cl− = 0. (5.31)

Most Pitzer models follow this, but not all. For the present toolkit, the Harvie et al. (1984)
convention is preferred. The implementation of such a convention would be in a supporting data
file, not in software. Therefore, the software should be capable of following either convention.
The coefficient σnca describes interactions among a neutral, a cation, and an anion. The coefficients
λnn, µnnn respectively describe second and third order interactions involving a neutral and itself.
The coefficients λnn� , µnnn� , µn�n�n describe second and third order interactions among a neutral (n)
and a different neutral (n’).
Coefficients of the form µnnc and µnna describe third order interactions among a neutral and a
cation or anion respectively (cf. Clegg and Brimblecombe, 1990). They bear a certain analogy to
the coefficients λnc and λna in that an analogus convention is required. The preferred convention
for the present toolkit is analogous to that of Harvie et al. (1984) for those λ coefficients:

µn,n,H+ = 0. (5.32)
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Table 2: Key Pitzer interaction coefficients.

Species Combination Interaction Coefficients
Cation-anion (ca) β(0)

ca , β1
ca, β

2
ca, C

φ
ca

Cation-different cation (cc’) Sθcc� (usually tabulated as “θcc�”)
Anion-different anion (aa’) Sθaa� (usually tabulated as “θaa�”)
Cation-different cation-anion (cc’a) interactions ψcc�a

Anion-different anion-cation (aa’c) interactions ψcc�a

Neutral-cation (nc) λnc

Neutral-anion (na) λna

Neutral-cation-anion (nca) σnca

Neutral-same neutral-cation µnnc

Neutral-same neutral-anion µnna

Neutral-same neutral (nn) λnn, µnnn

Neutral-different neutral (nn’) λnn� , µnnn� , µn�n�n

The alternative(e.g. Clegg and Brimblecombe, 1990) is

µn,n,Cl− = 0. (5.33)

The actual choice is again a database issue. It would be desirable to use conventions for these λ and
µ coefficients that are both tied to the same cation or anion, although that is not strictly necessary.
Clegg and Brimblecombe (1990) also include coefficients of the form µn,n�,c and µn,n�,a, where n
and n’ are different neutral species. Here such coefficients will be excluded, as they would require
regressing data for aqueous systems more complex than type ternary (see below).
The above set of practical coefficients is fairly classical and should be sufficient for the present
toolkit. It is based on the notion that all necessary data should be obtainable by regressing physico-
chemical data for binary and ternary aqueous systems, all of which are represented by one of the
following types: H2O-ca, H2O-cc’a, H2O-caa’, H2O-nca, H2O-n, and H2O-nn’. Additional types
of coefficients can be obtained by examining data for more complex systems. However, this is
generally a good point to draw a limit for the Pitzer model based on molality expansion.
Table 3 notes the key parameters other than interaction coefficients. The Aφ parameter is included
here, as the exact values of the interaction coefficients may depend on the value assumed in data
regression. As noted earlier, the value 0.392 was used in the development of the Harvie et al.
(1984) model of the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system at 25◦C and in
many other works at this particular temperature. Aφ depends on temperature, and most models
covering a range of temperature use a temperature function of some kind (see below), and usually
that yields a slightly different value at 25◦C. Therefore, this parameter should be treated as a
characteristic element of any specific Pitzer model (and corresponding database). A specific model
or value for this parameter should not be hard-coded into software. In Pitzer models, the b Debye-
Hückel parameter is generally treated as a constant value 1.2. The Pitzer α1, α2 parameter sets
which in part determine the ionic strength dependence of second-order cation-anion interactions
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Table 3: Key Pitzer parameters other than interaction coefficients.

Parameter Value(s)
Aφ 0.392 for the Harvie et al. (1984) model at

25◦C and most models at that temperature;
otherwise a function of temperature and pres-
sure.

b Constant value of 1.2 in all significant known
Pitzer models.

α1, α2 1.2, 0 for most cation-anion pairs;
1.4, 12 for 2:2, 3:3, and 4:4 cation-anion pairs
and sometimes other cation-anion pair types.
Other values may be used in certain examples
of Pitzer models. Should be treated in the
present toolkit as potentially unique to each
cation-anion pair.

(see below) are specific to cation-anion pairs. Here α1 is associated with β1
ca and α2 is associated

with β2
ca. Originally Pitzer (1973) assigned the values 1.2 and 0 (effectively zero, at least) for most

cation-anion pairs, and the value of α2is irrelevant in such instances as β2
ca is not used (see below).

The values 1.4, 12 (and usage of β2
ca) were recommended for 2:2 (charge of cation: -charge of

anion) pairs, and this was later extended to 3:3, 4:4, etc. Some Pitzer models assign other than
these traditional values. The safest procedure is to define the values for each cation-anion pair on
a supporting data file and use the traditional values (which are charge dependent) as defaults. This
allows maximum flexibility.
The other key Pitzer parameters are interaction parameters of various types. In the development
of the theory (Pitzer, 1973), there are second order coefficients (symbolized by λ), and third order
coefficients, symbolized by µ.
The corresponding key equations for Pitzer’s equations (based on molality expansion) are given
below. Here M refers to a cation whose activity coefficient is to be calculated, X to such an anion,
and N to such a neutral solute species.
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Θφ
cc� =

SΘcc� +
EΘcc� + IEΘ

�

cc� , (5.56)

Θφ
aa� =

SΘaa� +
EΘaa� + IEΘ

�
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Harvie (1981) proposed a method of using two Chebyshev polynomial approximations to calculate
J(x) and J �(x). One polynomial is used for Region I (x = 1) and the other for Region II (x >1).
Table 4 contains the requisite coefficients. The equations are as follows:
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Region I (x = 1):

z = x5 − 2,
dz

dx
=

4

5
x− 4

5 ,

bk = zbk+1 − bk+2 + aIk, k = 0, . . . , 20,
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Region II (x > 1):
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10 − 22

9
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dz
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= −40

90
x− 11

10 ,

bk = zbk+1 − bk+2 + aIIk , k = 0, 20,

dk = bk+1 + zdk+1 − dk+2, k = 0, 20.

The final equations are
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2
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When temperature dependence is considered, the various Pitzer parameters are generally described
by empirical temperature functions. The recommended temperature function for the present toolkit
is

A = a1 + a2

�
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− 1
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�
+ a3 ln

�
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Tr

�
+ a4 (T − Tr) + a5

�
T 2 − T 2

r

�
. (5.60)

where A is the parameter to be calculated, a1 − a5 are the associated constants, T is the abso-
lute temperature, and Tr is the reference temperature (298.15K). More elaborate forms are not
recommended. Also, it is preferred to use the term in temperature-squared only if the precedinig
four terms are inadequate. More recent work is likely to be consistent with the above form in the
first four terms, although the terms might be in a different order. It is noted that the eight-term
form proposed by Greenber and Moller (1989) is overly complex and contains singularities with
respect to temperature. When data are encountered in such a form, they should be recast into the
more reasonable form given above. This has been done for example for the Greenber and Moller
(1989) data in the Yucca Mountain Project Pitzer thermodynamic database (see Sandia National
Laboratories, 2007, Appendix I).
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Table 4: Chebyshev polynomial coefficients for computing J(x) and J �(x) (Harvie, 1981)

k aIk aIIk
0 1.92515 40148 14667 0.62802 33205 20852
1 -0.06007 64777 53119 0.46276 29853 38493
2 -0.02977 90774 56514 0.15004 46371 87895
3 -0.00729 94996 90937 -0.02879 60576 04906
4 0.00038 82606 36404 -0.03655 27459 10311
5 0.00063 68745 99598 -0.00166 80879 45272
6 0.00003 65836 01823 0.00651 98403 98744
7 -0.00004 50369 75204 0.00113 03780 79086
8 -0.00000 45378 95710 -0.00088 71713 10131
9 0.00000 29377 06971 -0.00024 21076 41309

10 0.00000 03965 66462 0.00008 72944 51594
11 -0.00000 02020 99617 0.00003 46821 22751
12 -0.00000 00252 67769 -0.00000 45837 68938
13 0.00000 00135 22610 -0.00000 35486 84306
14 0.00000 00012 29405 -0.00000 02504 53880
15 -0.00000 00008 21969 0.00000 02169 91779
16 -0.00000 00000 50847 0.00000 00807 79570
17 0.00000 00000 46333 0.00000 00045 58555
18 0.00000 00000 01943 -0.00000 00069 44757
19 -0.00000 00000 02563 -0.00000 00028 49257
20 -0.00000 00000 10991 0.00000 00002 37816
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5.2.6 Extended UNIQUAC

The Extended UNIQUAC model is another high ionic strength model. It differs from the Pitzer
model in various ways, but the most striking is the elimination of triplet interaction parameters and
the appearance of a small number of “singlet” parameters in addition to the charge number. These
differences result in a striking reduction in the number of parameters required to model a system
containing a large number of solute species. Extended UNIQUAC is fundamentally based on mole
fractions. Molal activity coefficients for the solute species are therefore derived the mole fraction
counterparts. Also, water (the solvent) is considered in the relevant pair interactions.
There are presently multiple “flavors” of Extended UNIQUAC. The one that will be addressed
here is based on Thomsen (1997, 2005) and various other papers, of which Thomsen is usually a
co-author. The reason for this choice is that this particular flavor has been openly developed to
cover a wide range of useful components, while others are less extensively developed or are at
least in significant part proprietary. The original model covers the system containing the solute
species Na+, K+, NH+

4 , H+, Cl−, NO−
3 , SO2−

4 , HSO−
4 , OH−, CO2−

3 , HCO−
3 , and S2O2−

8 from
25 to about 110◦C. The number of chemical species treated has been significantly extended in
subsequent development. Thomsen (2005) provides the preferred overview of the model, while
Thomsen (1997) provides more detail. This model has been incorporated into an as yet unreleased
version of EQ3/6 (and a corresponding supporting thermodynamic data file exists).
The effectiveness of the Extended UNIQUAC model is comparable to the molality-based Pitzer
model described above. It may have an advantage at smaller mole fractions of water, as it this
is a mole fraction-based model. It is notably weaker at elevated temperature, due to the sim-
ple temperature dependence currently applied to the pair interaction parameters, as noted below.
That weakness could be easily remedied, however. The Extended UNIQUAC model is becoming
increasing popular since, compared with the Pitzer’s model (in either molality- or mole fraction-
based form), it produces comparably good results with fewer parameters that need to be fitted to
experimental data.
The model utilizes the following singlet parameters: ri and qi (“volume” and “surface area” pa-
rameters, respectively). These are treated as constant in regard to temperature. The model also
uses the uki pair interaction parameter, which is treated as a function of temperature:

uki = u0
ki + ut

ki(T − Tr), (5.61)

where T is the absolute temperature and Tr is the reference temperature (298.15K). Here both k
and i span the range of component species, including solvent water. The combination in which k
and i are equal is included. For example, the pair combination H2O − H2O is included. The u
coefficients are symmetrical (ukl = ulk). The linear representation of temperature dependence is
probably a limiting factor in regard to the temperature range of the model. A three-parameter form
would likely be required to significantly extend the temperature range.
The ri and qi are used to calculate the following quantities:

φi =
xiri�
l xlrl

, (the “volume fraction”); (5.62)

θi =
xiqi�
l xlql

, (the “surface area fraction”). (5.63)
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In the above equations, l spans all component species (including solvent water). Here x denotes
mole fraction. Note that for a solute species, the mole fraction is given by

xi =
mi

Ω +
�

j mj
, (5.64)

where j spans only the solute species. For solvent water (w), the mole fraction is given by

xw =
Ω

Ω+
�

j mj
. (5.65)

The uki pair interaction parameter is used to calculate

ψki = exp(−uki − uii

T
). (5.66)

Note that symmetry does not apply to this parameter (ψik does not necessarily equal ψki, because
uii does not necessarily equal ukk).
The Extended UNIQUAC theory first addresses mole fraction (or “rational”) activity coefficients,
symbolized here by f (by λ in earlier discussion). These are calculated by first obtaining char-
acteristic parts. In UNIQUAC theory, these include the “combinatorial” (C) or entropic part and
“residual” (R) or enthalpic part. For the mole fraction activity coefficient these parts are respec-
tively given by

ln fC
i = ln

�
φi

xi

�
+ 1− φi

xi
− z

2
qi

�
ln

�
φi

θi

�
+ 1− φi

θi

�
, (5.67)

ln fR
i = qi

�
1− ln

�
�

k

θkψki

�
−

�

k

θkψik�
l θlψlk

�
, (5.68)

where i spans all component species. Here z in the combinatorial part is the coordination number,
assigned a value of 10.
The corresponding infinite dilution terms are obtained by setting xw = 1:

ln f∞,C
i = ln

�
ri
rw

�
+ 1− ri

rw
− z

2
qi

�
ln

�
riqw
rwqi

�
+ 1− riqw

rwqi

�
, (5.69)

ln f∞,R
i = qi [1− lnψwi − ψwi] . (5.70)

These infinite dilution terms are only pertinent to the solute species. They are required to obtain
the mole fraction activity coefficients for solute species for an infinite dilution reference (fi = 1 at
infinite dilution, instead of at xi = 1).
The desired mole fraction activity coefficients are obtained by combining the combinatorial and
residual parts with a Debye-Hückel part, which is based on the Debye-Hückel-charging model .
The activity coefficient of water is then given by

ln fw = ln fC
w + ln fR

w +
1

Ω

�
2Aγ,e

b3
σ(b

�
I)

�
, (5.71)
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where b is assigned the familiar value of 1.5. Since fwis the same as λw, the activity of water can
be obtained from

ln aw = ln xw + ln fw. (5.72)

The osmotic coefficient, if desired, can be obtained from the activity of water using the relation
given in previous sections.
The mole fraction activity coefficient of a solute species is given by

ln fi = −Aγ,ez2i
√
I

1 + b
√
I

+ ln fC
i − ln f∞,C

i + ln fR
i − ln f∞,R

i . (5.73)

Here Aγ,e = ln (10)Aγ,10. The molal activity coefficient of a solute species can then be obtained
using

ln γi = ln fi + ln xw. (5.74)
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5.2.7 NEA SIT

The NEA SIT model is a “Specfic Interactions Theory” model adopted by the European Nuclear
Energy Agency (NEA) for use in its international program to develop thermodynamic data sets for
mostly radionuclide elements of concern to geologic disposal of high level nuclear waste. The term
specific interactions theory is generically used to describe theories in which the activity coefficients
pertinent to aqueous solutions have a general dependence on specific solution composition. In
particular, it is recognized that the ionic strength is insufficient to fully describe this dependence.
Recall that Pitzer’s equations also represent a “specific interaction theory.” Therefore, the present
model, often referred to as just “SIT,” will here be referred to as “NEA SIT” to avoid potential
confusion.
The NEA SIT model was basically adopted to provide activity coefficient corrections to measured
data, so as to yield true equilibrium constants (mostly complexation constants). The model in
the modern context traces to Grenthe et al. (1992), who used it in a study of the thermodynamic
properties of aqueous, solid, and gas uranium-bearing species. The model was described in their
Appendix B, “Ionic strength corrections”. The model has been more recently discussed by Grenthe
et al. (1997), whose title more appropriately includes “medium effects.” They also introduced
some minor modification in regard to the treatment of neutral aqueous species.
The NEA SIT model has been further developed in other volumes in the NEA “Chemical Thermo-
dynamics” series (the uranium volume was the first in the series). Although there has always been
a strong focus on species pertinent to radionuclide species, it was recognized from the start that
analyzing data pertinent to aqueous media would require extending the model to include necessary
species that would be part of the media. These “auxiliary data” include extension of the NEA SIT
model to handle pertinent non-radionuclide species.
Although there has been great interest in and usage of the standard state thermodynamic data pro-
duced by the NEA project, there has been less implementation of the NEA SIT activity coefficient
model in pertinent modeling codes and applications. There has thus far been little testing of the
ability of the NEA SIT model to handle systems of geochemical interest, which would provide a
stronger test of the adequacy of the model, in particular regard to the adequacy of the auxiliary
data. This situation may be changing, as it has recently been announced that NEA SIT has been
added as an option to the modeling code PHREEQC.
The origins of the NEA SIT theory basically go back to Guggenheim (1935), although the present
model includes some modifications, mostly tracing to Ciavatta (1980). A helpful way to look
at the model is to compare it with Pitzer’s equations. Basically, the equations are like Pitzer’s
equations, except that third-order interactions are excluded. NEA SIT uses a form of the Debye-
Hückel-charging model instead of Pitzer’s Debye-Hückel-osmotic model for the Debye-Hückel-
term. The second order interactions are treated as a function of ionic strength, somewhat similar
to the treatment in Pitzer’s equations. This treatment distinguishes the NEA SIT model from the
Guggenheim (1935) model, which did not include such ionic strength dependence.
The relevant equations are

log10 γj =
−z2jAγ,10

√
I

1 + 1.5
√
I

+
�

k

εjkmk, (5.75)
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where εjk is a second-order interaction coefficient. This is treated in the general case as a function
of ionic strength as previously recommended by Ciavatta (1980):

εjk = ε1,jk + ε2,jk log10 I. (5.76)

In many instances, however, it may simply be treated as a constant (e.g., εjk = ε1,jk).
It is assumed (Grenthe et al., 1992, p. 686, Assumption 2) that there are no pair-wise interactions
among ions of the same charge sign and for uncharged species. More simply put, the only non-
zero interactions are for cation-anion combinations. Grenthe et al. (1997) removed the restriction
regarding uncharged species, but appear to have considered only ion-neutral interactions.
There are difficulties with the Ciavatta (1980) representation of the ionic strength dependence of
the second-order interaction coefficient. The magnitude of the term in log10 I approaches infinity
as I approaches zero. Note that

ε
�

jk =
∂εjk
∂I

=
ε2,jk

ln(10)I
. (5.77)

The derivative becomes singular as I approaches zero Also, although εjk at first seems to be the
analogue of the Pitzer λij (differing by a factor of two, with jk substituting for ij), it really isn’t.
This can be seen by comparing the NEA SIT equation for the solute activity coefficient with that
for Pitzer’s equations. The NEA SIT equation lacks a term containing ε

�
jkanalogous to the term in

λ
�

ij
appearing in the Pitzer equation (and which is second order in molality). One should therefore

expect that the NEA SIT equation 1) may not satisfy the thermodynamic consistency relations, and
2) may be at best only quasi-consistent with a corresponding equation for the activity of water.
Grenthe et al. (1997) reviewed similarities and differences between the NEA SIT equations and
Pitzer’s equations but unfortunately did not address the consistency issue in the former. This issue
will be addressed further later in this section.
The omission of treatment of third-order interactions and the restriction of the treatment of second-
order interactions to cation-anion cases only provides for a much simplified model. However, it
is likely to also restrict the range of accuracy (as may the suspected consistency problem noted
above). Indeed, the model is only intended for application in a moderate range of ionic strength.
Grenthe et al. (1992, p. 685) note that the use of the 1.5 value in the denominator of the Debye-
Hückel term was found by Ciavatta (1980) to provide useful fits in the ionic strength range 0.5-3.5m
and note its correlation to regressed values of second-order interaction coefficients. The actual
application of the NEA SIT model in the NEA “Chemical Thermodynamics” series is generally
for maximum ionic strengths in the 1-2 molal range. In the absence of additional testing, an upper
limit of ionic strength for using this model would appear to be something like 2-4 molal. This is
sufficient to be useful for many applications, but clearly falls short of what can be done using a
model based on Pitzer’s equations or Extended UNIQUAC.
Grenthe et al. (1992, Table B.1, p. 685) recommend using the values of Helgeson et al. (1981) for
the Aγ,10 parameter, which they simply refer to as A. They note its temperature dependence, but do
not recommend a specific means of describing this.
Grenthe et al. (1992) do not present a general equation for the activity of water. Their primary
recommendation is to calculate the activity of water from the osmotic coefficient, using data tables
for pure aqueous electrolytes and electrolyte mixtures that correspond to the relevant electrolyte
media. They do suggest (p. 688, equation B.12) a formulation that is specific to a pure electrolyte
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solution. This does not specifically address the consistency problem that may arise if the interaction
coefficient is dependent on ionic strength, and the derivative of this coefficient is ignored.
If one tests the activity coefficient equation for self-consistency using the relation

∂ ln γj
∂mi

=
∂ ln γi
∂mj

, (5.78)

one obtains, after making appropriate substitutions and simplification, that the following residual
would have to be satisified:

�
�

k

mkε2,jk

�
z2i
2

=

�
�

k

mk�ε2,ik

�
z2j
2
. (5.79)

This is not likely to be the case unless ions i and j have the same magnitude of charge number
and the two summations happen to be equal. The summations are likely to be equal only under
restricted circumstances. For example, if i and j are both cations and k spans the anions (ignoring
neutral species) , then ε2, would have to have the same value for all cation-anion pairs. Other
assumptions about i and j lead to the same result (or similar results if neutral species are con-
sidered). This problem vanishes if the total interaction coefficients are treated as constants (e.g.,
εjk = ε1,ik, ε2,ik = 0 ).
The following approximation for the activity of water is recommended for the present toolkit when
using the NEA SIT model:

log aw =
1

Ω

�
−
�

i mi

ln(10)
+

2

3
Aγ,10I

3
2σ(1.5

√
I)−

�

jk

εjkmjmk

�
. (5.80)

This is only a quasi-consistent form due to the points noted above.
The NEA SIT model does not seem to have a specific recommended form for the temperature
dependence of the coefficients ε1 and ε2. This is apparently because the model is mainly developed
for 25◦C. Grenthe et al. (1992) largely avoid the issue. Grenthe et al. (1997) give a detailed
discussion of thermodynamic properties related to elevated temperature and pressure. However,
they give no generally useful form for a practical treatment of the temperature dependence. To use
their equations, one would need tabulated values of various derivative properties, which are only
available for a relatively small number of species. Therefore, in practice, this model is restricted to
25◦C until someone does further development.
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5.2.8 Rescaling Ionic Activity Coefficients

The activity coefficient models described above include descriptions of individual ion activity
coefficients. This is problematic in that ionic activity coefficients and ionic activities are not
measurable for individual ions. These quantities are measurable only in combinations that cor-
respond to electrical neutrality. For activity coefficients, examples of such combinations include
log γH+ + log γCl− and 2 log γH+ + log γSO2−

4
; examples for activities are analogous. Molalities of

individual ions are measureable (or quantifiable by inference). Thus, if one could obtain or specify
the activity or activity coefficient of one single ion in an aqueous solution, one could then use this
as a reference to obtain the activities and activity coefficients of all other ions present in the same
solution.
The need to define activity coefficients and activities for individual ionic species is dealt with by the
use of a “splitting” convention. Such a convention is at least somewhat arbitrary, although it may be
guided in part by theoretical concerns. One could address the issue by adopting the results of model
equations for single ion activity coefficients. The model equations for these are all in part arbitrary,
implicitly including a splitting based on some combination of theoretical notions and pleasing
(but not necessarily unique) symmetry. The problem with just using the model equations in their
native form is that other conventions have been previously adopted into measurement practice,
particularly the measurement of pH. For accurate modeling consistent with standard analytical
chemistry practice, it becomes necessary to rescale the results of the model equations presented
above. This only affects the activity coefficients of ionic species. For most analytical splitting
conventions, some expression is specified for the activity coefficient of a reference ion, usually
Cl− or H+.
The most significant analytical splitting conventions for aqueous ions are tied to the definition of
the pH. Conceptually,

pH = − log aH+ . (5.81)

In order to provide a practical basis for measuring the pH, it is necessary to define the activity of
the hydrogen ion. The splitting convention used for this purpose then defines a pH scale. The
choice of pH scale further affects the definition of the redox potential, Eh.
In modern work, the dominant pH scale is the NBS scale, originated by the National Bureau of
Standards, now the National Institute of Standards and Technology. The NBS scale is based on the
Bates-Guggenhiem equation (Bates, 1964):

log γCl− = − Aγ,10

√
Ī

1 + 1.5
√
Ī
. (5.82)

This is a simple form of the extended Debye-Hückel equation. It defines the activity coefficient
of the chloride ion. It may be surprising that chloride is used as the reference ion rather than the
hydrogen ion, which is more closely tied to the pH. What is apparent is that the Bates-Guggenheim
equation must give a result that is different from what would be obtained for the chloride ion using
say the Davies equation or the B-dot equation, or for that matter, from Pitzer’s equations. In the
range of low ionic strength (say less than 1 molal), the differences should be numerically small for
each of the three practical models, as they and the Bates-Guggenheim equation all include some
form of extended Debye-Hückel model and thus are all consistent with the Debye-Hückel limiting
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law. At higher ionic strength, however, the differences can be substantial (the equivalent of several
pH units).
The Bates-Guggenheim equation can be applied whether or not there is any chloride in aqueous
solution, as the equation is sufficient to calculate the specified activity coefficient. The charge
number of -1 is effectively built into the equation.
The Bates-Guggenheim equation (the NBS pH scale) is effectively built in to the calibration of all
modern means of measuring the pH, whether in pH calibration buffers or pH paper. EQ3/6 for
example by default rescales ionic activity coefficients computed from the models to be consistent
with the NBS pH scale (other options, including no rescaling, may be offered). Rescaling from
one scale (scale “1”) to another (scale “2”) is accomplished using

log γ(2)
i = log γ(1)

i +
zi
zj

�
log γ(2)

j − log γ(1)
j

�
. (5.83)

Here j denotes the reference ion (here Cl−) and i denotes any ion (including the reference ion).
In the present context, scale “1” is usually that implied by a model equation and scale “2” is the
desired scale.
An alternative convention is to choose

log γH+ = 0. (5.84)

For the hydrogen ion, this results in

pH = − logmH+ . (5.85)

as the activity and molality of the hydrogen ion are numerically equivalent. The rescaling of ionic
activity coefficients for consistency does not give an analogous result for other ions. EQ3/6 allows
rescaling using this convention as an option, but it has limited utility and it not recommended as a
general option in the present toolset.
The definition of the pH in terms of molality (“pmH”) is significant independent of rescaling. Thus
one has simply

pmH = − logmH+ . (5.86)

In concentrated electrolyte solutions (e.g., WIPP, Hanford tanks), pmH is often more useful for
assessing the acidity/basicity of a solution than the NBS pH. The NBS pH cannot be accurately
measured in concentrated solutions owing to liquid junction effects with electrodes and interfer-
ences with dyes. Also, the Bates-Guggenheim equation (and the NBS pH scale itself) was origi-
nally intended for use only at low ionic strength. Bates (1964) suggested application to solutions
with ionic strengths of no greater than 0.1 molal. Since then, however, the scale has been used at
higher ionic strengths. This has led to the problem that of two highly concentrated solutions with
an NBS pH of say 2, one might be acidic (in the sense that H+ is abundant) and the other not (in the
sense that H+ is not abundant). In other words, the common association of pH values with various
degrees of acidity/basicity (e.g., 7 is neutral) no longer applies.
Still other conventions and scales exist. However, for the present toolset only the following is
required. First, the default behavior will be to apply rescaling to the NBS scale. Second, the option
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will be available to use the basic model results without rescaling. Third, the pmH will be directly
calculated and included in the output. An option to rescale the activity coefficients for consistency
with the log γH+ = 0 convention will not be required.

5.3 Sorption

5.3.1 Overview

Sorption involves the attachment of dissolved and/or colloidal species to mineral or other solid
surfaces. Sorption has the effect of slowing the effective transport rate of a species through porous
media through its retardation effect. The retardation effect for a species, Rf , is given by (Bouwer,
1991)

Rf =
Vgw

Vsp
, (5.87)

where Vgw is the velocity of the groundwater and Vsp is the velocity of the species. A variety of
models have been used to describe sorption and can be broadly divided into those that describe it
as a bulk process versus those that are mineral or solid phase specific. The latter approach involves
the calculation of bulk sorption from the sum of sorption on individual solid phases, an assumption
referred to as Component Additivity. Within the class of bulk sorption models, a distinction can
be made between those which assume a finite number of sorption sites (these are referred to as
showing Langmuir type behavior and include the Langmuir isotherm itself and most surface com-
plexation and ion exchange models) and those that assume either an infinite sorption capacity or at
least a capacity that is not tightly constrained (these include the linear distribution coefficient and
the nonlinear Freundlich isotherm). Alternatively, one could also distinguish between single com-
ponent, non-competitive models (e.g., Langmuir and Freundlich) and multicomponent competitive
models (surface complexation and ion exchange).
Another possible distinction is between equilibrium and kinetic sorption models. In many cases,
the formulations for the equilibrium and kinetic cases differ only insofar as the kinetic case involves
involves a thermodynamic driving force (as in the equilibrium case), but modified by a finite rate
constant. In some cases, however, sorption is described as irreversible, which implies that there is
no back reaction (desorption).

5.3.2 Process Model Equations

Linear Distribution Coefficients (Kd). A simple approach to describe metal or ionic radionu-
clide sorption by a sediment,

Aaq � Aads, (5.88)

is to use a constant distribution coefficient, defined by:

Kd =
[Aads]

[Aaq]
, (5.89)

where Kd is the distribution coefficient (L/kg), [Aads] is the sorbed concentration (mol/kg) to the
bulk solid phase, and [Aaq] is the total dissolved concentration in groundwater (mol/L) (Davis and
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Kent, 1990). One of the key advantages of representing sorption with a distribution coefficient is
that it can be easily incorporated into reactive transport models used for migration predictions.
Equation (5.89) shows that if one assumes that the amount of sorption is proportional to the dis-
solved concentration, then there is a linear relationship where the Kd value is the slope. In this
simple case, referred to as a linear isotherm, retardation of a concentration front in simple porous
media is given by

v̄

v̄c
= 1 +

ρb
n
Kd, (5.90)

where ρb is the bulk density, n the porosity, v̄ the average linear velocity of the groundwater and
v̄c the velocity of the point on the concentration profile where the concentration is half that of the
input concentration (Freeze and Cherry, 1979). Note that the ratio v̄/v̄c here is the retardation factor
and represents the retardation of the movement of front relative to the flowing groundwater. While
this is a simplified example, it serves to illustrate the key point that the Kd value directly influences
predictions of adsorbing metal or radionuclide mobility.

Assumptions and Applicability Sorption is proportional to the dissolved concentration. The
aqueous and adsorbed phases are in equilibrium.

Data Needs Typically Kd values are determined for a particular subsurface material from the
slope of a fitted line to the concentration of the sorbed species, Aads, plotted versus the dissolved
concentration of the same species, Aaq. These data may be derived from laboratory analyses, where
one typically varies the dissolved concentrations systematically, or they may be derived from in
situ field data. Since Kd values may be variable, and in particular a function of temperature, pH or
the redox state of the system (see below), it is often necessary to compile them in a lookup table
for use by a particular computer code.

Langmuir Isotherm. The Langmuir isotherm assumes that the sorption sites, S, on the surface
of a solid (absorbent) become occupied by an absorbate from the solution, A. Implying a 1:1
stoichiometry

S + A � SA, (5.91)

where SA is the adsorbed species on the surface. At equilibrium, a standard mass action equation
can be written:

Kads,L =
[SA]

[S]{A} , (5.92)

where the square brackets here refer to the concentration of the species or site, and the curly
brackets refer to the aqueous activity. Using the maximum concentration of surface sites, ST

[ST ] = [S] + [SA], (5.93)
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one can write the Langmuir isotherm in its familiar hyperbolic form

[SA] = [ST ]
Kads{A}

1 +Kads{A}
. (5.94)

Assumptions For the following, it is assumed that the surface and aqueous species are in equi-
librium.

Data Needs The equilbrium constant, Kads, is typically obtained from experimental data. It
depends on the specified absorbent and absorbate, and may be a function of temperature. It may
be calculated from:

Kads = exp

�
−∆G◦

ads

RT

�
, (5.95)

where ∆G is the change in free energy for the reaction, typically obtained from a database, R is
the gas constant and T is the temperature.

Freundlich. The Freundlich isotherm is another equilibrium model for sorption of absorabte A
onto sorption sites, S.

S + A � SA. (5.96)

Represented by the mass action equation:

Kads,F =
[SA]

{A}βF
, (5.97)

where the square brackets again refer to the concentration of the species or site, the curly brackets
refer to the aqueous activity. Kads,F and βF are the Freundlich parameters (e.g. Langmuir, 1997;
Stumm, 1992).

Assumptions For the following, it is assumed that the surface and aqueous species are in equi-
librium.

Data Needs The Freundlich parameters, Kads,F and n, are generally obtained by fits to exper-
imental data for a specific surface and aqueous species. They will generally be obtained from a
database, and may be represented by a functional form or lookup table.

Multi-site, Multi-component Ion Exchange. An ion exchange reaction can be described via a
mass action expression with an associated equilibrium constant (Appelo and Postma, 1993; Sposito
and Sparks, 1981; Vanselow, 1932). The exchange reaction can be written in generic form as

vAClu(aq) + uBXν(s) � uBClν(aq) + vAXu(s), (5.98)
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where X refers to the exchange site occupied by the cations Au+ and Bv+. The equilibrium con-
stant, Keq, for this reaction can be written as (Vanselow, 1932)

Keq =
{BClν}u{AXu}ν

{AClu}ν{BXν}u
, (5.99)

where the curly braces refer to the thermodynamic activities. Several activity conventions are in
wide use. One possibility is the Gaines-Thomas activity convention, which assumes a reaction
stoichiometry of the following form (Appelo and Postma, 1993), written here assuming the Cs+ is
the relevant cation of interest

Cs+ + (1/z)MX(i)z � CsX(i) + (1/z)M z+, (5.100)

where M is the competing cation (Na+, K+, Ca++), z is its charge, and X(i) refers to the ith type
of exchange site. In the Gaines-Thomas convention, each exchange site, X(i) has a charge of -1.
The activities of adsorbed species correspond to the charge equivalent fractions, β(i)M ,

β(i)M =
zMq(i)M�
M zMq(i)M

= {X(i)M}, (5.101)

where zM is the charge of cation M , q(i)M is the concentration of adsorbed cation M in exchange
site i (moles/g), and the curly brackets denote activities. The Gapon activity convention is obtained
by writing the reactions in every case with a single exchanger (Appelo and Postma, 1993). Alter-
natively, the Vanselow convention (Vanselow, 1932) describes the exchanger activity with mole
fractions

β(i)M =
q(i)M�
M q(i)M

= {X(i)M}. (5.102)

The exchange reactions can then be used to write a mass action equation for binary Cs-M exchange:

KM/Cs =
β(i)1/zM {Cs+}

β(i)Cs{M z+}1/z (5.103)

=
{X(i)M}1/z{Cs+}
{X(i)Cs}{M z+}1/z . (5.104)

In a single-site ion exchange model, the CEC is equal to the sum of the charge equivalent concen-
trations of the adsorbed cations:

CEC =
�

M

zMqM , (5.105)

while in a multi-site model, the CEC is the charge summed over all of the cation exchange sites
(Cernik et al., 1996; Voegelin et al., 2000)

CEC =
�

i

�

M

zMq(i)M . (5.106)

Assumptions For the following, it is assumed that the surface and aqueous species are in equi-
librium.
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Surface Complexation. An alternative approach that allows a modeler to describe sorption while
simultaneously considering variable chemical conditions in the subsurface is a surface complexa-
tion model (Davis et al., 2004). In this approach, the sorbing sediment surfaces are considered to
possess surface functional groups that can form complexes analogous to the formation of aqueous
complexes in solution. These surface reactions include proton exchange, cation binding and anion
binding via ligand exchange at surface hydroxil sites (represented here as XOH to avoid confusion
with other chemical species). For example, the sorption of a metal could be represented as

XOH +M z+ � XOM z+−1 +H+. (5.107)

At equilibrium, the sorption reactions can be described by the mass law equation

Kapp =
[XOM z+−1] {H+}
[XOH] {M z+} , (5.108)

where Kapp is referred to as the apparent equilibrium constant, because it includes surface charge
effects and hence is dependent on the extent of surface ionization (Dzombak and Morel, 1990), {i}
is the thermodynamic activity of aqueous species i, and the terms in square brackets represent the
concentration of surface complexes (mol/kg).
Surface complexation differs from the simpler isotherm and ion-exchange models in several impor-
tant ways. Surface complexation is based on the electrical double layer (EDL) theory. EDL theory
assumes that the surface charge of a sorbent in contact with solution generates an electrostatic
potential that declines rapidly away from the sorbent surface, creating an electrostatic field. An
additional energetic term accounting for the work needed for the aqueous species to travel across
the surface electric field is required:

∆Gads = ∆Gintr +∆Gcoul

= ∆Gintr + (∆Gψ=0 −∆Gψ=ψ0)

= ∆Gintr − zFψ0. (5.109)

where ∆Gads is the free energy change of the overall adsorption reaction, ∆Gintr and ∆Gcoul

are the free energy change due to chemical bonding and to the electrostatic work (Coulombic
attraction), respectively, z is the charge of the surface species, F the Faraday’s constant (96485
C/mol), and ψ0 is the mean surface potential (V ). Since

∆G = −RTlnK, (5.110)

Equation (5.109) can be rewritten as

Kapp = Kint exp

�
zFψ0

RT

�
, (5.111)

where R is the gas constant (8.314 J/mol/K), T is the absolute temperature (K), and Kint is the
intrinsic equilibrium constant which does not depend on the surface charge.
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Bulk and Mineral Specific Surface Complexation. There are two major approaches for apply-
ing the surface complexation concept to soils and sediments: the Component Additivity (CA) and
Generalized Composite (GC) approaches (Davis et al., 1998, 2004). In the CA approach, it is as-
sumed that a mineral assemblage is composed of a mixture of one or more reference phases, whose
surface chemical reactions are known from independent studies of each phase (e.g. Arnold et al.,
2001; Davis et al., 2004; Landry et al., 2009). Based on a measurement of the relative amounts or
surface areas of each mineral present in the soil or sediment, sorption by the mixture of phases can
be predicted by an equilibrium calculation, without any fitting of experimental data for the mixture.
CA model predictions are sometimes made by assuming that one mineral component dominates
sorption (Barnett et al., 2002; Davis et al., 2004; Payne et al., 2004; Zhang et al., 2009), allowing a
straightforward equilibrium calculation, if the exposed surface area of that mineral component in
the soil or sediment can be quantified.
In the GC approach, the surface of the mineral assemblage is considered too complex to be quan-
tified in terms of the contributions of individual phases to sorption and/or that the contribution of
individual components is not additive. The complexity is caused, in part, by the difficulties in
quantifying the electrical field and proportions of surface functional groups at the mineral-water
interface in the mixture of mineral phases and associated surface coatings. In the GC approach, it
is assumed that sorption can be described by mass laws written with “generic” surface functional
groups, with the stoichiometry and formation constants for each mass law determined by fitting ex-
perimental data for the mineral assemblage as a whole (Bond et al., 2008; Davis et al., 2004; Hyun
et al., 2009). The GC modeling approach has generally been applied using a non-electrostatic
model (NEM), which considers surface equilibria strictly as chemical reactions without explicit
correction for electrostatic attraction or repulsion (Davis et al., 2004; Kent et al., 2000; Yabusaki
et al., 2008). In an NEM, the apparent binding constants and stoichiometry of the mass action
equations are derived by fitting the macroscopic dependence of adsorption as a function of pH
(Davis et al., 1998). Because of the exclusion of electrical double layer terms, the mass action
equations are not expected to provide accurate representations of the stoichiometry of the reac-
tions at the molecular scale, however, the surface reactions can still be coupled with aqueous
complexation reactions to provide simulations of macroscopic sorption as a function of aqueous
chemical conditions.
Although there are differences between the GC and CA approaches, they are very similar with
respect to their scientific basis. The following concepts form the basic tenets of both GC and CA
modelling approaches (Davis et al., 1998):

1. Mineral surfaces are composed of chemical functional groups that can react with dissolved
solutes to form surface complexes (coordinated complexes or ion pairs) in a manner analo-
gous to aqueous complexation reactions in homogeneous solutions.

2. The equilibria of surface complexation and ionization reactions can be described via mass
law equations, either with or without correction factors applied for electrostatic attraction to
or repulsion from the surface.

3. The apparent binding constants determined for the mass law equations of surface complex-
ation and ionization reactions are semi-empirical parameters related to thermodynamic con-
stants via rational activity coefficients for surface species.
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Both CA and GC models may:

1. be coupled to the same critically reviewed aqueous thermodynamic data

2. use spectroscopic data to constrain and/or determine surface complex chemical composition
and stoichiometry, and

3. use the same mass laws and surface species.

The differences among the model approaches lie primarily in the manner in which the models are
calibrated and assumptions about various model parameters (in particular, whether the contribu-
tions of the various mineral phases to sorption and electrostatic fields can be considered as addi-
tive). CA models have almost always been applied using mass laws with electrostatic correction
factors, while GC models have not usually used these factors.

Experimental and Modeling Issues Associated with SCMs for Soils and Sediments. Com-
mon to all applications of surface complexation approaches in soils and sediments is an initial
characterization with respect to surface area, bulk mineralogy, and clay and organic carbon content.
In addition, if the sediment is already contaminated with a metal or radionuclide, a measurement
of the labile fraction of the contaminant needs to be determined (Bond et al., 2008; Curtis et al.,
2004; Kohler et al., 2004).
In the GC approach, laboratory experiments are conducted with the field site sediments across
the range of chemical conditions that are relevant to the scenarios of the physical and temporal
modeling domains. Then, mass law relationships are derived that describe the change in metal or
radionuclide sorption with variations in the aqueous chemical conditions (Davis et al., 2004). Total
surface functional groups are typically estimated from surface area measurements. The number of
surface site types and surface binding reactions is a practical modeling decision made based on the
goodness-of-fit and the desired number of modeling parameters (Hyun et al., 2009).
In the CA modeling approach, after the sediment mineralogy is known, an estimate of the dis-
tribution of mineral surface areas is made. This can be done by simply assuming that the bulk
weight abundances of various mineral phases are related to the distribution of functional groups at
the sediment surface. For example, if quartz represents 60% by weight of the sediment, then an
initial estimate could be that 60% of the surface area is represented by the quartz surfaces. Then a
model of metal or radionuclide adsorption on quartz (as a function of chemical conditions relevant
to the field site) is chosen from available literature data. Similar models for other minerals in the
sediment are also catalogued. In some cases, model parameters may need to be re-derived from
the original experimental data to develop a dataset that is self-consistent. In particular, this may
be necessary if different electrical double layer models were used in the reference mineral models.
Other approaches for estimating the distribution of mineral surface areas may be used, including
chemical extractions and other methods (Davis et al., 1998, 2004). Once the component mineral
models have been chosen, a predictive calculation of metal or radionuclide sorption for a specific
set of chemical conditions can be made.
Possible limitations inherent to the surface complexation approach include poor representation
of: a) surface functional groups, b) surface area, c) electrical double layer properties, d) surface
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species, e) surface binding constants, and f) competing surface reactions and their electrostatic
effects. These limitations exist for both GC and CA modeling approaches, but the GC approach
attempts to resolve some of the issues by using empirical data to overcome unknown factors and
unmeasured parameters. For example, consider the representation of surface functional groups:
Assume that only silanol, aluminol, ferrinol, and clay mineral edge sites are of importance in a
particular sediment sample. At present it is very difficult or expensive to determine the distribu-
tion of mineral surface areas in a mixed mineral assemblage. Extractions, X-ray diffraction, and
surface spectroscopies have been used by various investigators, but each of these methods pro-
vides estimates that are difficult to confirm independently. This uncertainty is circumvented in the
GC approach by assuming that the distribution of site types is an unknowable quantity, and only
generic sites are used. However, this requires that experimental data for the metal or radionuclide
sorption on a site-specific sediment sample are collected, whereas in principle at least, additional
characterization experiments are not needed for the CA modeling approach.

Quantifying Surface Sites Surface area is an important experimental quantity to be character-
ized in all surface complexation approaches. Typically a mixed mineral assemblage is character-
ized by BET analysis of nitrogen gas adsorption. Adjustments may need to be made for samples
that contain high abundances of clay minerals, depending on whether there is evidence of sorption
on the basal planes of clay mineral particles. Many investigators have concluded that surface func-
tional groups of the basal planes are unreactive for metal and radionuclide sorption, and therefore
the surface area of the basal planes does not need to be included in most applications. Fortunately,
the BET method does not typically measure the surface area of the basal planes. In GC applica-
tions, the surface area is typically used in a straightforward manner to quantify the total abundance
of surface sites using a conversion factor. In CA applications, however, the surface area should be
distributed among different functional group types.
Multiple site-types are commonly used in formulating SCMs and approximate the nonlinear isotherms
commonly observed for cation adsorption on well-characterized oxide mineral phases (Davis and
Kent, 1990; Dzombak and Morel, 1990). Postulating multiple site-types is also important for sim-
ulating peak tailing observed in experimental studies of U(VI) transport in columns (Kohler et al.,
1996). Reactive transport simulations that use multisite adsorption models can also simulate sig-
nificant peak tailing in field-scale simulations (Curtis et al., 2006; Kent et al., 2000, 2008, 2007).

Sub-models

1. Non-electrostatic Models: EDL models differ in whether coulombic attraction or repulsion
terms are considered in the mass laws of surface reactions. A non-electrostatic EDL means
that the term

exp(
zFψ0

RT
) (5.112)

in Equation (5.111) need not be considered. While electrical double layer (EDL) models may
represent these terms well for simple systems with single mineral phases, the approaches for
treating these terms in mixed mineral assemblages have not been studied. In Component
Additivity (CA) (Davis et al., 1998, 2004) applications to sediments, typically authors as-
sume that the EDL properties of pure, clean mineral phases investigated remain the same
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in mixed mineral assemblages (Davis et al., 2004). This ignores the likely effects of sur-
face contaminants (adsorbed major solutes such as silicate, organic compounds, etc.) and
the overlapping EDL regions of particles that are known to change coulombic terms. In
Generalized Composite (GC) approaches (Davis et al., 1998, 2004), the coulombic attrac-
tion or repulsion terms are not included, but are instead built into the semi-empirical model
calibration of reaction stoichiometries and binding constants to experimental data. That is,
whatever EDL forces exist, they are lumped into the model fitting of reactions and binding
constants. In each case, there is inherent uncertainty in the modeling approach. The errors
within the GC model may not be that significant because of model calibration to experi-
mental data, but the error is only minimized by confining model calculations to chemical
conditions interpolated between those investigated in laboratory experiments. Extrapolation
of any non-electrostatic model to uninvestigated chemical conditions is unwise because the
EDL forces for those conditions will not necessarily be captured accurately by the model
calibration. In addition the formation of unknown surface species may not be realized if
calculations are extrapolated to chemical conditions not investigated at all.

2. Electrostatic models: When the coulombic attraction or repulsion terms is considered as
shown in Equation (5.111), the electrostatic models differs also among themselves in how
they conceptualize the structure of the double-layer and describe changes in surface potential
and surface charge from the surface of the sorbent phase to the bulk solution. In the constant
capacity and diffuse-layer models, all adsorbed species are considered specifically adsorbed
at the zero plane while the triple layer model can assign adsorbed species to either a zero
plane or more distant plane. The constant capacity and diffuse-layer model are elaborated in
the following sections.

(a) Constant Capacitance The constant capacitance model is a special case of the diffuse-
layer model. Both models are based on the assumption that all the species are adsorbed
in the same layer and a diffuse layer of counterions constitutes the transition to ho-
mogenous solution. Additionally, it is assumed that the surface potentials are small,
or the double layer has been compressed (very high ionic strength). However, differ-
ently from the diffuse-layer model, the relationship between the surface charge and the
potential is assumed to be linear:

σ = Cψ, (5.113)

where σ is the surface charge, C m−2, ψ is the potential at the surface, V , and C is a
constant capacitance value, C V −1 m−2, to be obtained from fitting experimental data.
Equation (5.113) is solved for the potential and substituted into Equation (5.111).

(b) Diffuse Double Layer Model The diffuse layer model has been described in great
detail by Dzombak and Morel (1990) and was applied to adsorption of metals on iron
oxide surfaces. In the diffuse layer model, the solid-water interface is composed of
two layers: a layer of surface-bound complexes and a diffuse layer of counter ions in
solution. The surface charge is calculated from the total surface species adsorbed on
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the layer:

σp =
F

A

Ns�

k=1

zkyk. (5.114)

Here A is the surface area sorbent per liter solution (m2/L), F is the Faraday constant
(96, 480C/mol), zk is the charge of the ion, and yk is the concentration (mol/L) of
surface bound ions in the Stern Layer. According to the Gouy-Chapman theory, the
surface charge density σp (C/m2) is related to the potential at the surface (volts) by:

σp = (8RT�R �0 Ce × 103)1/2 sinh

�
zFψ0

2RT

�
, (5.115)

where R is the molar gas constant (8.314 Jmol−1K−1), Ce is the molar electrolyte
concentration (M ), z is the electrolyte charge, T is the absolute temperature (K), �R is
the relative dielectric constant of water (� = 78.5 at 25◦C), and �0 is the permittivity of
free space (8.854×10−12 C V −1m−1). Equation (5.115) is only valid for a symmetrical
electrolyte, the anion and cation must have the same charge. Note that C the unit
(coulombs or celcius) is not a concentration. Capacitance is not solved for explicitly,
but is implicitly accounted for in Equation (5.115). It is common to use the linearized
version of Equation (5.115) for low values of the potential:

σp = � �0κψ0, (5.116)

where 1/κ (m) is the double-layer thickness defined as

1

κ
=

�
� �0RT

2F 2 · 1000 I

�1/2

, (5.117)

where I is the ionic strength mol L−1. The first term of Equation (5.115), (8RT� �0Ce×
103)1/2, can be rewritten at 25◦C:

σp = 0.1174 C1/2
e sinh

�
zFψd

2RT

�
. (5.118)

Therefore, in the diffuse-layer model, the value of the capacitance C relating the surface
charge and the potential can be calculated based on theoretical considerations instead
of being an experimental fitting parameter.

(c) Triple Layer Model The triple layer model is similar to the double layer model, but
divides the sorbed species into two layers, Figure 2. Strongly sorbed species are located
close to the surface, the zero plane, while weakly sorbed species reside in the beta
plane, seperated from the surface by the strongly sorbed species and hydration layers
(e.g. Langmuir, 1997). Further out from the surface is a diffuse layer and the bulk
solution similar to the double layer.
The charge balance equation for the triple layer model is

σ0 + σβ + σd = 0, (5.119)
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where σ0, σβ and σd are the net surface charges in the zero, beta and diffuse planes
respectively, (C/m2). The net surface charge in the zero plane is given by:

σ0 =
F

A

Ns�

k=1

zky
0
k, (5.120)

where the variables are as defined in Equation (5.114) with the exception of y0k, which
is the concentration (mol/L) bound in the zero plane. Similarly, the net surface charge
of the beta plane is

σβ =
F

A

Ns�

k=1

zky
β
k , (5.121)

where yβk refers to the ions bound in the beta plane. Note that the composition of
the diffuse layer is not often calculated explicitly in either Triple Layer Model or the
Diffuse Double Layer Model, although a method to do so has been presented by Leroy
et al. (2007).
The triple layer model assumes constant capacitances between the zero plane and beta
plane, C1, and the beta plane and d-plane, C2. These are related to the surface charges
and potentials by:

σ0 = C1 (ψ0 − ψβ) , (5.122)

σβ = C1 (ψβ − ψ0) + C2 (ψβ − ψd) , (5.123)

σd = C2 (ψd − ψβ) . (5.124)

5.3.3 Common Data Needs for Sorption Models

All sorption models will require access to a database of parameter values that are potentially inde-
pendent of the specific contaminated site under consideration. For example, the cation exchange
capacity (CEC) of a mineral like smectite or kaolinite can be described with a range of values.
However, it is likely that site-specific experimental data will have to be collected and either col-
lected in a site-specific database, or serve as the basis of a site-specific lookup table.

5.4 Mineral Precipitation and Dissolution

5.4.1 Overview

Mineral precipitation and dissolution are among the most important processes affecting the trans-
port of contaminants in the subsurface. They represent a class of heterogeneous reactions that
require a slightly different treatment than do reactions taking place within the same phase. Perhaps
most importantly, a kinetic treatment of mineral reactions requires the inclusion of the interfacial
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truncation are introduced and then implemented into the electri-
cal model by Leroy and Revil [1] in Section 3. The optimization
and the results of such approach are finally presented and dis-
cussed.

2. Electrical models

2.1. Diffuse-layer model: Basic equations

The negative surface charge of clay minerals under near-
neutral PH conditions (i.e., 7–8) is attributed to isomorphic
substitutions in the clay minerals lattice and complexation reac-
tions at the edge of the particles [1,3]. Ions of opposite charge,
referred to as counterions, are attracted to the surfaces of miner-
als in order to balance this negative charge and achieve the over-
all electroneutrality of the porous medium. As a result of these
interactions, an electrical potential distribution and related ions
distribution develops within the interparticle space of clay ma-
terials, as depicted in Fig. 1. Two major types of electrical mod-
els have been developed over the past century: the double-layer
model (DLM) and the triple-layer model (TLM) [2,8]. The most
widely used DLM is based on the simple Gouy–Chapman the-
ory. In this approach, an atmosphere of counterions, considered
as point charges, the diffuse layer is distributed according to a
Boltzmann distribution in the vicinity of the charged surface.
The second model (TLM) is based on the Stern–Grahame the-
ory, which introduces a more realistic finite size for ions and an
additional compact layer of bound counterions, the Stern layer,
between the charged surface and the diffuse layer. These mod-
els, first applied to colloidal suspensions and then to compacted
clays, have been undergoing almost continuous use and devel-
opment for a long time (see [2,4,6,8]; and, e.g., [1,14–17]).

The DLM is based on the resolution of the Poisson–
Boltzmann equation in the simple Gouy–Chapman description
of the electrical distribution in the pore water, assumed to con-
tain N different species. The Poisson equation describes the
distribution of an electrical potential ϕ (V) in the pore water.
For an infinite charged mineral surface, the Poisson equation is

(1)
d2ϕ

dx2 = −ρ

ε
,

where ε is the permittivity (F m−1) of the solution, considered
as a constant (dielectric constant taken to be 80), ρ is the volu-
metric charge density (C m−3), and x is the distance normal to
the charged surface. The volumetric charge density is given by

(2)ρ = e
∑

i

νiCi,

where e is the elementary charge (1.6 × 10−19 C), Ci the con-
centration of ions i in the pore space, and νi the valence of this
ion. The Boltzmann distribution gives the concentration of ions
i at distance x from the mineral surface,

(3)Ci(x) = Ci exp
(−νieϕ(x)

kBT

)
,

where Ci is the concentration of species i in the equilibrium
solution (i.e., the solution, eventually fictitious, that would be

Fig. 1. Sketch of the TLM at clay surface from Leroy and Revil [1]. (a) M+
represents a metal cation (e.g., Na+) and A− an anion (e.g., Cl−). OHP is the
outer Helmoltz plane. The d-plane is assimilated to the shear plane; i.e., ϕd ≈ ζ ,
where ζ is the zeta potential arising in electrokinetic phenomena. The β-plane
and o-plane are respectively the mean plane in of Stern layer and the surface of
the clay particle. (b) Sketch of the electrical potential in the cases of truncated
and untruncated diffuse layers.

in thermodynamic equilibrium with the clay, see [1,18,19]),
kB is the Boltzmann constant (1.38 × 10−23 J K−1), and T is
the temperature (K). Combining Eqs. (1)–(3), one obtains the
Poisson–Boltzmann equation:

(4)
d2ϕ

dx2 = −e

ε

N∑

i=1

νiCi exp
(−νieϕ

kBT

)
.

This equation can be solved for a simple Gouy–Chapman model
(no compact layer adjacent to charged surfaces) or in the diffuse
layer of a Stern–Grahame model. Equation (4) can be integrated
under two main boundary conditions: an infinitely developed
diffuse layer or interacting (truncated) diffuse layers. In the case
of a diffuse layer developed at infinity the boundary conditions
write are

(5)
dϕ

dx

∣∣∣∣
x→∞

= 0, ϕ|x→∞ = ϕl = 0.

In the case where a truncation occurs at x = r , they are

(6)
dϕ

dx

∣∣∣∣
x→r

= 0, ϕ|x→r = ϕl = ϕr.
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Fig. 1. Sketch of the TLM at clay surface from Leroy and Revil [1]. (a) M+
represents a metal cation (e.g., Na+) and A− an anion (e.g., Cl−). OHP is the
outer Helmoltz plane. The d-plane is assimilated to the shear plane; i.e., ϕd ≈ ζ ,
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kB is the Boltzmann constant (1.38 × 10−23 J K−1), and T is
the temperature (K). Combining Eqs. (1)–(3), one obtains the
Poisson–Boltzmann equation:
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This equation can be solved for a simple Gouy–Chapman model
(no compact layer adjacent to charged surfaces) or in the diffuse
layer of a Stern–Grahame model. Equation (4) can be integrated
under two main boundary conditions: an infinitely developed
diffuse layer or interacting (truncated) diffuse layers. In the case
of a diffuse layer developed at infinity the boundary conditions
write are

(5)
dϕ

dx

∣∣∣∣
x→∞

= 0, ϕ|x→∞ = ϕl = 0.

In the case where a truncation occurs at x = r , they are

(6)
dϕ

dx

∣∣∣∣
x→r

= 0, ϕ|x→r = ϕl = ϕr.

Figure 2: Schematic of the TLM model from Gonçalvès et al. (2007).
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area between the phases (water and mineral), or reactive surface area (see Section 5.4.5). The re-
active minerals may be considered as pure, in which case their treatment is simplified by the fact
that their activity is always = 1, or they may be solid solutions, in which case their activities have
to be determined as in any other solution. Minerals may be assumed to be at equilibrium with the
aqueous solution, in which case they can be included in the total concentration in a fashion similar
to the way in which equilibrium secondary species are (Equation (5.5)), or they may be treated
kinetically. In most cases, it appears to be sufficient to treat the minerals kinetically, since the
equilibrium condition can be regained by using reaction rates that are sufficiently fast relative to
the time scales of interest (Steefel and MacQuarrie, 1996). This approach also offers the advantage
that the minerals can potentially be removed as direct unknowns in the solution procedure within
any one nonlinear iteration cycle and updated only at the end of the time step.

5.4.2 Kinetic Mineral-Water Rate Laws

Following the notation presented in Section 2, the mineral reactions take the form
�

j

νjmAjα � Mm, (5.125)

for mineral Mm with reaction rate Imα and stoichiometric coefficients νjm. The sum of the mineral
reaction rates affecting component j in phase α can be written as

Rjα =
�

m

νjmImα. (5.126)

In most cases, this will involve water as the fluid phase. Equation (5.126) implies that component
j may be involved in any number of parallel mineral reaction pathways (even within the same
phase), with each potentially described by its own rate law. Changes in mineral concentrations are
described by the equation

∂φm

∂t
= V m

�

α

Imα, (5.127)

with molar volume V m and where the sum over α on the right-hand side is over all fluid phases
that react with the mth mineral.
We use a kinetic rate law based on the assumption that attachment and detachment of ions from
mineral surfaces is the rate–limiting step (i.e., a surface reaction-controlled rate law). It does not
mean, however, that one cannot obtain overall transport control on the mineral dissolution or pre-
cipitation rate since this depends on the magnitude of the reaction rate relative to the macroscopic
transport rates. The rate laws used for mineral precipitation and dissolution are based loosely on
transition state theory (Aagaard and Helgeson, 1982; Lasaga, 1981, 1984)).

TST Type Rate Law. This formulation gives the dependence of the rate on the saturation state
of the solution with respect to a particular mineral as a function of the ion activity product, Qs,
defined by

Qm =
Nc�

j=1

a
νjm
j , (5.128)
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where the aj are the activities of the primary species used in writing the dissolution reaction for
the mineral and νjm are stoichiometric reaction coefficients. In order to incorporate the strong pH
dependence of most mineral dissolution and precipitation reactions far from equilibrium, parallel
rate laws are used which are summed to give the overall reaction rate law for a particular mineral
in phase α

Imα = −Amα

�
Nrm�

l=1

kl

�
Nc+Nx�

i=1

apili

��
1−

�
Qm

Km

�Ml
�nl

�
, (5.129)

where kl is the far from equilibrium dissolution rate constant for the lth parallel reaction, pil is the
exponential dependence on species i of the lth parallel reaction (i.e., the reaction order), Km is the
equilibrium constant, Nrm is the number of parallel reactions within phase α, and Amα refers to
the surface area of the reacting mineral in contact with phase α (m2 mineral m−3 porous medium).
The exponents nl and Ml allow for nonlinear dependencies on the affinity term and are normally
taken from experimental studies. The term

�Nc+Nx

i=1 apili incorporates the effects of various ions in
solution on the far from equilibrium dissolution rate. This is most commonly the solution pH or
hydroxyl ion activity but may include other electrolytes as well.
The temperature dependence of the reaction rate constant can be expressed reasonably well via
an Arrhenius equation (Lasaga, 1984). Since many rate constants are reported at 25◦C, it is more
convenient to write the rate constant at some temperature as

k = k25 exp

�
−Ea

R

�
1

T
− 1

298.15

��
, (5.130)

where Ea is the activation energy, k25 is the rate constant at 25◦C, R is the gas constant, and T is
temperature in the Kelvin scale.

Nonlinear Parallel Mineral Rate Laws. The rate law proposed by Hellmann and Tisserand
(2006), based on experimental data for albite, can be used for dissolution of silicate minerals. One
rate law describes far from equilibrium dissolution behavior with a rate constant k2, and one rate
law describes close to equilibrium behavior (k1):

Imα◦ = Amα◦{k1[1− exp(−m1g
m2)] + k2[1− exp(−g)]m3}, (5.131)

where g represents |∆Gr|
RT and the fitted parameters m1, m2 and m3 have values of 7.98×10−5, 3.81

and 1.17 (Hellmann and Tisserand, 2006). Here again the assumption is that the phase in question,
α◦, is water. This formulation is consistent with theoretical and experimental considerations which
suggest that far-from-equilibrium dissolution is characterized by the opening of etch pits and rapid
propagation of step waves, whereas close-to-equilibrium dissolution in the absence of etch pits is
localized to surface defects.

Dissolution Only. The simplest form of a dissolution only rate law would be a completely irre-
versible reaction with no back reaction (i.e., no precipitation). However, it may be desirable to have
a rate law which slows as equilibrium is approached, even though the back reaction cannot really
be demonstrated. Such a rate law is likely applicable to the dissolution of albite at low temperature,
since dissolution can be demonstrated while precipitation cannot. There is clear evidence in the
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case of plagioclase that the rate of dissolution does slow, so it is important to be able to include
this in the code (Maher et al., 2009). Similarly, it was found that kaolinite could not be described
with a single rate law that was continuous for both dissolution and precipitation (Yang and Steefel,
2008). To describe both precipitation and dissolution of kaolinite, therefore, one can use distinct
dissolution-only and precipitation-only rate laws.
A rate law for dissolution only could in principle include any number of rate laws having a TST
(linear or nonlinear) form, but with the added code (here presented as a linear TST rate with no
dependence on dissolved or sorbed species far from equilibrium for the sake of simplicity):

Imα◦ =

�
−Amα◦

�
1−

�
Qm

Km

��
if Imα◦ < 0,

0 if Imα◦ > 0.
(5.132)

Precipitation Only. A precipitation-only rate law takes a similar form to that of dissolution-only

Imα◦ =

�
Amα◦

�
1−

�
Qm

Km

��
if Imα◦ > 0,

0 if Imα◦ < 0.
(5.133)

5.4.3 Assumptions and Applicability for Rate Laws

All of the rate laws described above use reactive surface area as an important parameter (see Sec-
tion 5.4.5). This is because most of the rates determined for mineral dissolution and precipitation
are based on normalization to physical surface area. Rate laws that consider the actual kind and
density of reactive sites are possible, but so far are difficult to implement at the field scale.

5.4.4 Data Needs for Rate Laws

Data needs for mineral dissolution and precipitation are considerable and help to explain why
these processes have not always been included in subsurface environmental management codes.
In the case of mineral dissolution, it is necessary to know the reactive surface area of the dissolv-
ing mineral in contact with the mobile fluid phase. Reactive surface area within immobile zones
may contribute to the reactivity as well over long time scales via diffusion, so normally must be
considered as well (see Section 5.4.5).
Reactive surface area is an even more difficult topic in the case of mineral precipitation. Here
seeds may be created by nucleation, the seeds may growth via crystal growth and/or ripening
and agglomeration (Steefel and Van Cappellen, 1990). Some proposed methods for including the
evolution of reactive surface area are given in Section 5.4.5.

5.4.5 Reactive Surface Area Evolution

Surface area is a key parameter affecting mineral dissolution and precipitation rates, as well as
the extent of aqueous species (e.g., contaminants) sorption onto mineral surfaces. Accordingly,
surface area is one of the variables that appear in mineral dissolution and precipitation rate laws,
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Section 5.4, as well as in expressions needed to compute sorption site concentration for surface
complexation models, Section 5.3.2. The incorporation and treatment of surface areas into reactive
transport simulations can be broken down into two parts: initial surface areas, Equation (5.134),
which can be either directly input into the model if known, or estimated from input geometric data
and Equation (5.138) the actual evolution of surface areas (starting from input or calculated initial
values) upon mineral dissolution or precipitation.
Initial surface areas can be estimated from laboratory measurements for pure minerals or bulk
sediments. However, actual “reactive” surface areas in natural systems are largely unknown, and
have been shown to be typically smaller than laboratory measurements by several orders of mag-
nitude, and in much closer agreement with geometric mineral surface areas. For this reason, it is
not uncommon to estimate initial reactive surface areas from available geometric data on the size
and shape of mineral grains in porous media, or from data on fracture coverage (thus spacing) in
fractured rocks. This can be achieved either internally or externally prior to input, using relatively
simple mathematical expressions that do not require a high level of accuracy given the large vari-
ability of this parameter in natural systems. Alternatively, initial surface areas can be calibrated
during the course of reactive transport simulations.
Once initial (reactive) surface areas have been determined, the evolution of these areas upon min-
eral reaction needs to be captured in a manner that is consistent with field and experimental ob-
servations. For dissolving minerals in water-saturated systems, the evolution of reactive surface
area can be calculated, as a first approximation, by assuming some proportionality between the
amount of mineral present and its surface area. In such case, simple relationships can be devel-
oped relating surface area with mineral volume fraction, as shown further below. In unsaturated
systems, however, the problem is complicated by the fact that reactive surface areas are not only
function of mineral volume fractions, but also potentially of liquid saturation. While water serves
as the wetting phase in most cases, and thus in in contact with the solid grains in the medium, at
low saturations the coverage may become discontinuous. In this case, as a first approximation, the
reactive surface area in contact with the phase (in the case of water, the ”wetting phase”) can be
assumed to be proportional to liquid saturation.
Predicting the evolution of surface area from the onset of, and during, mineral precipitation is less
straightforward. If a mineral forms on existing surfaces (of the same mineral and/or on surfaces
of existing precursors), the surface area can be assumed to evolve with some proportionality to the
current volume fraction of the mineral (or precursor mineral(s)). However, if a mineral actually
nucleates from solution, without precursors, a rigorous treatment of nucleation is required (Steefel
and Van Cappellen, 1990). Such rigorous treatment, however, is deemed outside the scope of
current model requirements, primarily because input parameters for nucleation models are scarce
for most minerals. Instead, an approximate treatment can be considered, yielding a trend of sur-
face area evolution similar to that expected upon nucleation (i.e., initially large surface areas upon
nucleation decreasing with growth). This general behavior can be captured by assuming that the
initial (first formed, minimum) amount and grain size of a nucleating mineral is known. Us-
ing these two (input) parameters (i.e., minimum/initial volume fraction and grain size), the initial
number of precipitating mineral grains and their surface area can be easily computed for each min-
eral assuming simple grain geometries (e.g., spheres). Upon further precipitation, the evolution of
surface area can then be computed as a function of mineral grain size, with mineral grains growing
with some proportionality to the amount of mineral precipitation. As such, surface areas initially
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decrease with increasing mineral amounts, starting from initially large values at small initial grain
sizes. For each mineral, this decrease in surface area with growth can be assumed to continue until
the surface area reaches some preset (input) value corresponding to the surface area of the “bulk”
mineral. At this point, the surface area is assumed to evolve again with some direct proportionality
to volume fraction, as in the case of dissolving minerals.
The general methodology and formulation of the above-described approach are presented further
below. Note that because surface areas evolve relatively slowly in most systems, compared to
other parameters such as aqueous concentrations, surface areas can be computed explicitly. That
is, surface areas computed at the end of a flow/transport/reaction time step can be used as values
for computing reactive transport at the next time step.

Reactive Surface Area. The following general relationship can be used to compute reactive
surface areas of minerals as a function of time:

Amα = γm
�
φmASSm 1000 ρm + Amα

�
, (5.134)

where Amα is the effective reactive surface area of minerals (m2 mineral per m−3 porous medium),
γm is the fraction of the mineral’s surface area that is in contact with the phase (normally water),
φm is the volume fraction of the mineral, ASSm is the specific surface area of the mineral (m2/g),
ρM is the dry density of the mineral (kg m−3), and the factor of 1000 converts from kg to g. Amα is
the precursor surface area (m2 mineral m−3 medium). The fraction of the mineral surface area, γm,
in contact with the phase α may be estimated from petrographic observations, fitted from field data,
or potentially estimated based on as yet unspecified relationship with phase (liquid) saturation.
An alternative expression for computing reactive surface area is given by Steefel and Lasaga (1994)

Amα = γmA
◦
mα

�
φm

φ◦
m

�
, (5.135)

where A◦
mα and φ◦

m are the initial surface area and volume fraction of the mineral, respectively.
In the case of secondary minerals that are not initially present and where no precursor mineral
occurs with a non-zero volume fraction, both Eqns. (5.134) and (5.135) can be modified to include
a “threshold” mineral volume fraction that is used just for the purposes of calculating reactive
surface area. This mineral mass is considered to be derived from a short-lived nucleation event
that quickly creates surface area upon which subsequent mineral growth can occur. The threshold
volume fraction, φnucl, can be incorporated in the following way:

Amα =

�
γm (φmASSm 1000 ρm) if φm > φnucl

m ,

γm (φnuclASSm 1000 ρm) if φm < φnucl
m .

(5.136)

Such a procedure obviates the need for a more complicated formulation such as that found in
Steefel and Van Cappellen (1990).
Another option to be implemented involves a simple geometric method for calculating surface area
(Lasaga, 1984). If a simple cubic packing of spherical grains of radius r, is considered, then the
cubic arrangement of spheres yields, in a cube of side 4r and volume (4r)3, a total of 8 spheres,
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each of radius r, volume 4πr3

3 , and area 4πr2. Thus the surface area Anucl (as the area of the spheres
divided by the volume of the cube) can be computed as

Amα = γm
0.5

r
, (5.137)

where r is the average grain size of the mineral. A more comprehensive approach involving crystal
size distributions has been proposed by Steefel and Van Cappellen (1990).

Estimation of Reactive Surface Areas for Fractures. In a dual permeability (fracture-matrix)
system, the surface area of the fracture in contact with the mobile fluid phase, AF (in units of m2

fracture m−3 medium) is (Steefel and Lasaga, 1994)

AF = ϕF
2

δ
, (5.138)

where ϕF is the fracture porosity and δ is the fracture aperture. To calculate the amount of mineral
surface area present along the fracture, one can use the volume fraction of the primary dissolving
phase as an estimate of the fraction of the fracture surface made up of that mineral

Amα = ϕFφm
2

δ
. (5.139)

For precipitation, various schemes are possible. If the assumption is made that mineral precipita-
tion can occur anywhere along the fracture surface, then (5.138) can be used without modification.
For partially wetted fractures, a correction can be introduced to reduce the reactive surface area:

Amα = ϕFγmφm
2

δ
, (5.140)

where γm is the fraction of the fracture actually in contact with the reactive phase (normally water).

5.5 Microbially-Mediated Reactions

5.5.1 Overview

Microbially-mediated reactions or reaction networks represent an important class of biogeochem-
ical processes that need to be incorporated into environmental management codes (Roden, 2008).
Modeling of microbially-mediated processes is still in its infancy at this stage, however, with rela-
tively little treatment of the actual metabolic processes of microbial communities, or the interaction
of individual microbes making up the community. The revolution associated with the application of
molecular genetic tools (Banfield et al., 2005), which aims ultimately provide quantitative markers
for explicit metabolic pathways, is as yet still largely qualitative. As a result, the available ap-
proaches are limited in the extent to which they can capture the effects of environmental influences
on metabolic rates. This in turn limits the ability to quantify biogeochemical reaction processes
affecting contaminant transport.
As currently implemented in a number of reactive transport codes, microbially-mediated processes
are approached from a macroscopic point of view, with the rate of a specific biogeochemical re-
action (e.g., Fe(III) reduction) mediated by a microbial community. A number of biogeochemical
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models have been proposed that do not take explicit account of the microbial community dynam-
ics, with the argument that under many conditions the population will evolve to some steady state
value where its effects can be folded into the rate constant for the pathway (sometimes referred to
as a biomass-implicit approach, e.g., Dale et al. 2006). This may often be the case in subsurface
systems involving natural attenuation, but is clearly not a good assumption in the case of biostim-
ulation experiments where the biomass and its metabolic activity involve over relatively short time
scales (Li et al., 2009). In biogeochemical systems where biomass growth or death is important, it
is important to be able to track the amount of carbon converted to biomass (anabolic pathways) as
well as the amount of carbon used for respiration (catabolic pathways). As the relative proportion
of these pathways change, the reaction stoichiometry must change as well in order to conserve
mass locally and globally.

5.5.2 Process Model Equations

A variety of kinetic expressions have been used to describe microbially-mediated biogeochemical
reactions, ranging from zeroeth-order kinetic schemes, to first-order schemes, to hyperbolic for-
mulations (Michaelis-Menten or “Monod” kinetics). In addition, thermodynamic controls may be
important as well, since the microbes can make use of only the energy (∆G) that is available from
the reaction, and perhaps not even as much as that since there is a minimum Gibbs energy neces-
sary for maintenance of the ATP cycle (Jin and Bethke, 2005). However, a general formulation for
a microbially-mediated reaction can be written (Dale et al., 2006)

Rm = −υmaxB

Υ

�

i

Fi, (5.141)

where Rm is the microbially mediated reaction rate ( mol m−3 s−1), υmax is the maximum
rate of substrate utilization (s−1), B is the microbial biomass (cells m3), Υ is the cell yield
(cells mol−1

substrate), and Fi are dimensionless scaling functions for factors affecting growth. An
alternative model is the non-interacting model (Bäder, 1978) assuming that the limiting factors for
microbial growth are independent:

Rm = −υmaxB

Υ
min

i
Fi. (5.142)

where min is the minimum of all the possible limiting functions, Fi.

Monod Kinetics. The kinetic factor, FK is given by a standard dual Monod expression

FK =

�
[CD]

KD + [CD]

��
[CA]

KA + [CA]

�
, (5.143)

where CD and CA refer to the activities of the electron donor and acceptor respectively and KD

and KA are the half-saturation constants for the electron donor and acceptor respectively.
It has been noted that energetically less favorable pathways are inhibited, so the Monod expressions
also need to include hyperbolic inhibition terms of the form

FK =

�
[CD]

KD + [CD]

��
[CA]

KA + [CA]

��
KI

KI + [CI ]

�
, (5.144)
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where KI is the inhibition constant for a particular pathway by another species (normally an elec-
tron acceptor) and CI is the concentration of the inhibiting species for a particular pathway (e.g.,
O2 for a nitrate-reducing pathway).

Zeroeth-Order Kinetics. Zeroeth-order kinetics have been used in some cases to describe microbially-
mediated reactions.

Rm = υ0, (5.145)

where Rm is the substrate consumption rate and ζ is the rate constant with biomass implictly ac-
counted for, moles m−3 s−1. Such formulations, however, do not allow for a decrease in rate as
either equilibrium is approached or as the reactants are depleted, so they are inherently unrealistic
and problematic in a numerical context. Monod kinetics do show zeroeth-order kinetics when elec-
tron acceptor and donor concentrations are sufficiently high, but the Monod formulations transition
to first-order kinetics as concentrations of the acceptor and/or donor decrease.

First-Order Kinetics. Some classes of microbially-mediated reactions can be described with
first-order kinetics, with perhaps the oxidation of organic matter being the most common of these.
Such first-order biodegration schemes are relatively common in modeling organic matter in marine
sediments (Berner, 1977) and in contaminant plumes dominated by organics (Lorah and Olsen,
1999). The first-order rate expression can be written (similarly to those for radioactive decay) with
a dependence on either the electron donor or acceptor

Rm = υ1C, (5.146)

where υ1 is the first order rate constant for substrate consumption, s−1 with implicit biomass.

Thermodynamic Factor. The thermodynamic driving force, which is assumed to drive the reac-
tion in only one direction, is given by (Jin and Bethke, 2005)

FT = max

�
0,

�
1− exp

�
∆Gnet

χRT

���
, (5.147)

where ∆GNET is the fraction of the Gibbs energy of catabolism that provides a thermodynamic
drive for the reaction (further defined below), χ is the average stoichiometric coefficient, R is
the gas constant, and T is the absolute temperature. The average stoichiometric coefficient, χ,
is equivalent to the number of protons translocated across the cell membrane during catabolism
and is assumed equal to 1 in anaerobic metabolism (Jin and Bethke, 2005). As is apparent from
Equations (5.143) and (5.147), both FK and FT are dimensionless and vary from 0 to 1. As pointed
out, inclusion of such a thermodynamic term removes the need for kinetic inhibition terms as are
often found in microbial rate models (Dale et al., 2008). A temperature dependence can be added
through parameterization of the Gibbs energy (or equilibrium constants) in terms of temperature.
In the formulation of Dale et al. (2008) as adapted from Jin and Bethke (2005), the ∆GNET term
is the sum of two Gibbs energy terms of opposite sign

∆GNET = ∆GINSITU +∆GBQ, (5.148)
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where ∆GINSITU is the in situ Gibbs energy yield of the catabolic process and ∆GBQ is the
bioenergetic energy quantum (Dale et al., 2006; Hoehler, 2004)

∆GINSITU = ∆G0� +RT ln [Q] . (5.149)

Here ∆G0� is the standard Gibbs energy of catabolism at the in situ temperature. The minimum
bioenergetic energy, ∆GBQ, is the minimum that can be exploited by living cells to synthesize
adenosine tri-phosphate (ATP) and is coupled to the transfer of 3-4 protons across the cellular
membrane.

Biomass Evolution. For microbially-mediated reactions, typically some portion of the organic
matter (in the case of heterotrophs) or CO2 (in the case of autotrophs) is used for cell synthesis
(Roden, 2008), with the remaining portion of the electrons are used to generate energy. The fraction
of an electrons from the electron donor substrate used for cell synthesis is given by f 0

s , while that
fraction going to generate energy is given by f 0

e (Rittmann and McCarty, 2001). The sum of f 0
s

and f 0
e is 1. The fraction f 0

s can also be converted into mass units to give a true cellular yield

Υ =
f 0
s

ne
, (5.150)

where ne is the number of electron equivalents in a mole of cells. The growth rate of cells can then
be written as

dB

dt
= Υ

�
−dC

dt

�
− bB, (5.151)

where dB
dt is the net growth rate (mass of cells per unit volume per time) of an active organism B,

−dS
dt is the rate of usage of the substrate, b is the decay rate, and Υ is the true yield. Rittmann and

McCarty (2001) have proposed a method for calculating the fraction of electrons going to cellular
synthesis versus energy generation. Their approach should be included in the HPC for the cases
where the yield must be calculated dynamically.
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6 Colloid Transport Processes

6.1 Overview

Colloids are very fine particles (such as clay minerals, metal oxides, viruses, bacteria, and organic
macromolecules) that range in size between 1 and 10,000 nm (McCarthy and Zachara, 1989) and
have high specific surface areas (∼300 m2/g). The generation and mobilization of colloids are con-
sidered important issues in contaminant transport, particularly in the transport of radioactive true
(intrinsic) colloids (e.g., colloidal Pu(IV) and Pu(V)) and colloid-assisted transport of radioactive
species (e.g., 239Pu, 237Np, 243Am, and 247Cm from high-level radionuclide wastes, or 137Cs, 90Sr,
and 60Co from low-level radioactive wastes; see Meijer (2001) for sorption on pseudocolloids (e.g.,
naturally occurring clay colloids).
The DOE EM complex includes a diversity of hydrologic settings that involve transport of colloids.
Such transport can be a cause of concern when contaminants (such as radionuclides) have sorbed
on these colloids, or the colloids themselves have formed from supersaturation of contaminants. In
the case of heavy metals and radionuclides, colloids are responsible for significant transport from
the point of release, which is orders of magnitude larger than what would be expected if solute
transport were the main mechanism of contaminant migration. Such transport has been observed
at several locations that are part of the US DOE complex, and which represent a wide spectrum of
geological and climatic conditions: LANL, INEL, LLNL, PNNL (Hanford site), Savannah River,
Rocky Flats, Nevada Test Site etc. Additionally, concerns about colloid transport were significant
drivers behind the analysis involved in the evaluation of the suitability of the Yucca Mountain site
as the location for a proposed High level Nuclear Waster Repository.
The complexity of colloid-related transport necessitates inclusion of all the known processes (as
described in the next sections). Therefore, it may be necessary to account for different colloid
types involved in the transport of a particular species, or for subsets (each representing a range
of the particle size distributions) of similar types of colloid colloids. In some of the more com-
plex problems involving the transport of multidisperse colloids, it is entirely possible that up to 8
equations (2 for the main mass components, i.e., gas and water, one for a species of interest (e.g.,
PuO2), and up to five components representing distinct ranges of colloidal sizes) may need to be
solved simultaneously. If colloidal and contaminant concentrations are low (i.e., unaffecting the
water density), and/or if the flow fields become time-invariant within a relatively short time, it is
possible that the flow and transport equations can be decoupled and solved separately, thus speed-
ing up execution. Thus, the code capabilities need to be flexible, accommodating the entire range
from very demanding situations necessitating the solution of the fully-coupled strongly-nonlinear
problem, to more easily solved scenarios in which linearization is possible and flow and transport
can be safely decoupled.
It is envisaged that the software describing colloid transport will be accessible by all flow-related
software developed within the framework of the ASCEM. However, it is expected that two-phase
flow systems (involving the flow of water and air) in saturated-unsaturated geologic media will
represent the vast majority of the problems to be encountered, i.e., it is not expected that there
will be a need to involve 3-phase flow physics. Additionally, in cases in which the gas phase is
not expected to exhibit significant pressure changes, it is expected that a single flow equation (i.e.,
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the Richards’ equation, rather than the two full equations for the air-water system) will suffice to
describe the hydrologic regime that controls colloid transport.

6.1.1 Colloidal Behavior

Radioactive true colloids or radionuclides adsorbed onto pseudocolloids can be transported far-
ther than free radioactive elements (McCarthy and Zachara, 1989). The significant migration
of strongly sorbing Pu and Am (more than 30 m), from a low-level nuclear waste site at Los
Alamos National Laboratory through unsaturated tuff over a period of approximately 30 years,
is attributed to colloid and/or colloid assisted transport, a hypothesis confirmed by laboratory ex-
periments (Buddemeier and Hunt, 1988). Using the 240Pu/239Pu isotope ratio to fingerprint the
source of Pu in the water table, Kersting et al. (1999) demonstrated that soluble (ionic) Pu is prac-
tically immobile in the subsurface of the Nevada Test Site because of its strong sorption, but can
be transported over significant distances (1.3 km over a 30-year period) in colloidal form.
A complete description of colloid-facilitated radionuclide transport requires consideration of a
large number of processes (EPRI, 1999), including advection, diffusion, colloid generation, colloid
stability, colloid-solute-matrix interactions, affinity of colloids for the gas-water interface, colloid
filtration (surface and straining), and kinetically controlled physical-chemical filtration.

6.1.2 Colloid Types and Classes

The analysis in Buck et al. (2003) identifies the following types of colloids (Figure 3), based on
their origin and characteristics:

1. True (or intrinsic) colloids are generated from a solute when its concentration exceeds its
solubility (Saltelli and Bidoglio, 1984). For example, true Pu(IV) colloids have been pro-
duced by the agglomeration of hydrolyzed Pu(IV) ions under acidic conditions (EPRI, 1999).
When immature, actinide true colloids display hydrophilic properties, but become hydropho-
bic with increasing age.

2. Waste-form colloids are formed from the nucleation of colloids from waste form dissolution,
and from spallation of colloid-sized waste from alteration products.

3. Pseudocolloids are all other colloidal particles, i.e., natural colloids that can be inorganic
(e.g., clay, iron oxyhydroxides, silica) or organic (microbes and humic acids (Ibaraki and
Sudicky, 1995). Pseudocolloids become carriers of contaminants (including radionuclides)
when the corresponding solutes sorb onto them. (Note that in Buck et al. (2003) only ra-
dioactive pseudocolloids are referred to as such, while non-radioactive ones are referred to
as seepage/groundwater colloids).

In terms of the mathematical description of their radioactive and transport behavior, these colloids
are classified as follows:
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Class I. In this class the entire non-aqueous component of the colloidal particle is radioactive.
True colloids and waste-form colloids are Class I colloids (Figure 3). It is not generally known
whether, in radioactive Class I colloids, decay-induced recoil is sufficiently strong to cause ejection
of daughters and shrinkage of the colloidal particle, whether the colloidal size is maintained but
its density is reduced after daughter ejection, or whether the daughters remain trapped within the
colloidal structure. If there is ejection, then either the colloid density or the colloid size decreases
(leading to larger diffusion).

Class II. In Class II, only a portion of the colloidal particle (usually a very small one) involves
a contaminant (e.g., is radioactive). This class includes radioactive pseudocolloids (Figure 3), in
which the actinide is irreversibly sorbed onto the colloid or incorporated into the colloidal structure
(e.g., through ion exchange). In this case, the actinide remains confined onto the colloid and does
not exchange mass with its surroundings (i.e., the liquid phase or adjacent colloids). If the time
of actinide production is the same (a valid approximation, especially in radionuclides with long
half lives), then the colloidal particle concentration in the liquid (mobile colloids) and solid phases
(immobile colloids, filtered or strained), and the radionuclide concentration of each colloid, are
independent of each other and can be computed separately. Radioactive decay does not change the
dimensions of Class II colloids because, even in the event of daughter ejection due to recoil, the
actinide mass represents a very small portion of the total colloid mass, and the colloidal structure is
maintained. Compared to the transport of Class I colloids of the same size with decaying sources,
Class II colloids result in lower radioactivity concentrations (because actinides are a small portion
of the total mass), but their relative concentrations (with respect to that at the release points) are
the same.

Class III. Class III includes radioactive pseudocolloids in which actinides are reversibly sorbed
onto the underlying natural colloid (Figure 3). As in Class II colloids, only a small portion of the
colloidal particle is radioactive. In this case, the actinide components are not confined onto the
colloid, but can exchange mass with their surroundings (i.e., the liquid phase or adjacent colloids).
For the same reasons discussed in Class II colloids, radioactive decay does not change the dimen-
sions of Class III colloids. However, determination of the radioactivity concentration is much more
complex in Class III colloids than in Class I and II colloids (the transport equations of which can
be linearized), because the corresponding equations are nonlinear.

Class IV. A fourth class of colloids, Class IV colloids, includes all nonradioactive colloids and
can belong to any colloid type (true colloids or pseudocolloids).

6.1.3 Colloid Generation and Stability

The formation of mobile colloidal suspensions in the subsurface is attributed to a number of mech-
anisms:

1. matrix dissolution caused by changes in pH or redox conditions;

2. supersaturation with respect to the inorganic species;
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

Figure 3: A conceptual image of the colloid classes I-III is presented along with their origins.
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3. disruption of the mineral matrix by large changes in the flow regimes resulting from injec-
tion, pumping, or large episodic rainfall infiltrations;

4. release and movement of viruses and bacteria; and

5. formation of micelles from the agglomeration of humic acids (Abdel-Salam and Chrysikopou-
los, 1995).

6. Buddemeier and Hunt (1988) indicate that submicrometer colloids can easily be released
from mineral and glass surfaces that are chemically, hydrodynamically, or mechanically
stressed.

Colloid stabilization/destabilization includes steric stabilization by mechanisms such as organic
coating of inorganic colloids, and the effects of pH and ionic strength on coagulation and precip-
itation. The stability of colloid suspension is very sensitive to changes in ionic strength (EPRI,
1999).

6.1.4 Colloid Deposition

Colloid deposition (physical-chemical filtration) during saturated flow through a porous medium
is commonly assumed to occur in two steps: (1) transport of colloids to matrix surfaces by Brow-
nian diffusion, interception, or gravitational sedimentation (i.e., colloid-matrix collision) and (2)
attachment of colloids to matrix surfaces. The attachment efficiency (i.e., the fraction of colli-
sions resulting in attachment) is strongly influenced by interparticle forces between colloids and
matrix surfaces, such as van der Waals and electric double-layer interactions, steric stabilization,
and hydrodynamic forces (Kretzschmar et al., 1995). Kretzschmar et al. (1997) demonstrated that
colloid deposition generally follows a first-order kinetic-rate law and experimentally determined
the corresponding collision efficiencies.

6.1.5 Colloid–Contaminant–Matrix Interactions

Colloid attachment to the host rock is strongly dependent on electrostatic interactions. Once at-
tached, colloid detachment (declogging) is generally slow to irreversible (Ibaraki and Sudicky,
1995). Sorption of radionuclides on colloids is controlled by a range of chemical processes such
as ion exchange, surface complexation, and organic complexation (Ding et al., 2006; EPRI, 1999).
If sorption of radioactive ions onto colloids is assumed to follow an equilibrium isotherm, radionu-
clides are stripped very quickly from the colloids when these enter a clean (radionuclide-free) part
of the porous medium. This approach was incapable of explaining the long transport distances
observed in field experiments (Van de Weerd and Leijnse, 1997). In the study, the problem was
addressed by assuming (a) kinetic sorption of radionuclides onto the humic colloids and (b) ki-
netic colloid deposition (Van de Weerd and Leijnse, 1997). The sorption of dissolved ionic Pu(IV)
onto hematite, goethite, montmorillonite, and silica colloids in both natural and carbonate-rich
synthetic waters was reported to be fast (Meijer, 2001). Under equilibrium conditions, the colloid
distribution coefficient Kd values of Pu(V) was about 100 mL/g for hematite and montmorillonite
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colloids. These very large values indicate that iron oxide and clay colloids can significantly en-
hance the transport of 239Pu. Very large Kd values of actinide sorption are also confirmed in Buck
et al. (2003). The values are so large that they can support an approximation of treating such
radioactive Class III colloids as Class II colloids.

6.1.6 Colloid Straining Filtration

Colloid straining filtration is a physical retardation process. Wan and Tokunaga (1997) distinguish
two types of straining: conventional straining (if the colloid is larger than the pore throat diameter
or the fracture aperture) and film straining (if the colloid is larger than the thickness of the adsorbed
water film coating the grains of the rock).
Wan and Tokunaga (1997) developed a conceptual model to describe colloid transport in unsatu-
rated media as a function of water saturation Sw. If the rock Sw exceeds a critical saturation value
Sc, colloids move through the system entirely within the aqueous phase. For Sw < Sc, colloids can
only move in the thin film of water that lines the grain boundaries, and colloid transport through
the water film depends on two parameters: the ratio of the colloid size to the film thickness, and
the flow velocity. Temporal variations in Sw in the subsurface profile and in the infiltration rate can
lead to strongly nonlinear colloid mobility in the vicinity of Sc.
McGraw and Kaplan (1997) investigated the effect of colloid size (from 52 to 1900 nm) and
Sw (from 6 to 100%) on colloid transport through unsaturated media in Hanford sediments. They
showed a very strong dependence of filtration on the colloid size under unsaturated conditions. At
a volumetric water content of 6%, (the expected water content in the Hanford vadose zone), colloid
removal increased exponentially with colloid size. The decrease in colloid mobility at low volu-
metric water contents was attributed to resistance caused by friction (as the colloids were dragged
along the sand grains). Colloid retardation increased as the ratio between the water film thickness
and colloid diameter decrease.
Straining filtration is determined by the ratio Rd = dg/dp, where dg is the diameter of the grains
of the porous medium and dp is the suspended particle diameter. Based on the experimental data
of Sakthivadivel (1969), Rd = 10 leads to cake filtration, 10 < Rd ≤ 20 corresponds to substantial
straining filtration (permeability reductions by a factor of 7-15 and particles occupying 0.3φ), and
Rd > 20 results in limited straining (only 2 - 5% of φ occupied by particles, and permeability
reductions by 10-50%). Herzig et al. (1970) indicated that little straining was expected when Rd

> 12, and calculated that when Rd = 50, only 0.053% of φ would be occupied by particles.

6.1.7 Other Processes

Colloid Diffusion. Colloids diffuse slower than dissolved species because of their larger size.
For the largest colloids, diffusion is approximately three orders of magnitude slower than that for
molecular species (Nuttall et al., 1991). For example, the diffusion coefficient D0 of a 0.1µm
colloid at 20◦C is 4.29 × 10−12 m2/sec, while the D0 of Br− is 2.08 × 10−9 m2/sec (Cussler,
1997).
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Pore Exclusion. Using mercury porosimetry, Roberts and Lin (1997) determined that the av-
erage pore diameters of welded and densely welded tuff samples ranged between 19.7 and 53.1.
These extremely small pores are certain to exclude a significant proportion of colloids. It is pos-
sible for colloids to accumulate on the fracture walls and thus clog the matrix pores open to the
fracture. This can lead to reduction in the matrix permeability and in the colloid diffusion into the
matrix. Pore exclusion is not expected to be significant in the fractures, and colloids can travel
cover significant distances in the fractures (especially given the limited diffusion into the matrix).

Role of Air-Water Interface. The affinity of colloids for the air-water interface depends on their
hydrophobicity and electrostatic charge. Hydrophilic colloids, such as mineral fragments, have a
low affinity for the interface, in contrast to hydrophobic colloids (such as organic colloids and
microbes). This affinity increases with the positive charge on the colloids (EPRI, 1999). The flow
and saturation conditions in the subsurface determine whether this enhances or retards transport.
Note that the potential impact of the air-water interfaces on colloid transport has not been quantified
yet.

6.2 Process Model Equations

6.2.1 General Mass Balance Equation

The conservation of mass for a tracer is given by (Equation (2.12))

∂φ
�

α sαραYi,α

∂t
= ∇ · J i +Qi, (6.1)

where Yi mass fraction of tracer i (solute or colloid), φ is the porosity, sα is the saturation of
phase α, ρ is the density of phase α, J i the total mass flux of tracer i and Qi the mass rate of the
source/sink of tracer i.

6.2.2 Accumulation Terms

The total accumulation of tracer i, Yi, (solute or colloid) in a porous or fractured medium (PFM) is
given by:

Yi =

�
Yi,α + Yi,Θ + Yi,C when i is a solute;
Yi,α + Yi,ξ when i is a colloid,

(6.2)

where Yi,α is the mass fraction in phase α, Yi,Θ is the mass of tracer i adsorbed onto the PFM grains
or surface, Yi,C is the mass of tracer i adsorbed onto pseudocolloidal particles, Yi,ξ is the mass of
filtered colloidal tracer i.
Pseudocolloids are clearly differentiated from “true” colloids – i.e., those generated from contami-
nants when their concentrations exceed the solubility limit (Saltelli and Bidoglio, 1984) - and their
transport behavior includes both transport of these colloids, as well as that of solute contaminants
sorbed onto them (colloid-assisted transport).
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Accumulation of Filtered Colloids. Accumulation of filtered colloids is given by:

Yi,ξ = ρC,iξi, (6.3)

where ρC,i is the density of colloidal tracer i, ξi is the filtered concentration of colloids expressed
as the volume of colloids per volume of the PFM.
For equilibrium filtration

ξi = KξρYi, (6.4)

where Kξ is a distribution coefficient. Colloid filtration is more accurately described by a linear
kinetic model (Corapcioglu et al., 1987), which can take the following form:

∂ξi
∂t

= k+Yi − k−ξi, (6.5)

where k+ and k− [s−1] are the kinetic forward and reverse colloid deposition rates (clogging and
declogging coefficients), respectively, which are specific to each colloid and rock type. The term
k− is commonly assumed to be zero (Bowen and Epstein, 1979), but there is insufficient evidence
to support this assumption. An alternative is to set k− equal to a fraction of k+. Because the
kinetic coefficient k+ is a linear function of the flow velocity, Equation (6.6), dependence of k− on
velocity appears to be conceptually sound.
From De Marsily (1986) and Ibaraki and Sudicky (1995), the following expression for the k+

coefficient can be derived:
k+ = �ffvqGB, (6.6)

where �f is the filter coefficient of the porous medium , fv is a velocity adjustment factor, q is the
Darcy velocity , and GB is a dynamic blocking function that describes the variation of the porosity
and specific surface with ξi (James and Chrysikopoulos, 1999). The factor f (1 ≤ f ≤ 1.5)
accounts for the velocity of the colloidal particle flow being larger than that of water (Ibaraki and
Sudicky, 1995). This larger particle flow results from the relatively large size of the colloids,
which tends to concentrate them in the middle of the pores where the water velocity is larger than
the bulk average velocity. The factor fv tends to increase with decreasing ionic strength, but cannot
exceed 1.5 because colloids cannot move faster than the maximum water velocity, which occurs at
the middle of the pores and is equal to 1.5 times the average pore velocity (Ibaraki and Sudicky,
1995).
The filter coefficient � can be computed from Harvey and Garabedian (1991) as

� = 1.5
1− φ

dm
αCηC , (6.7)

where dm is the particle size of the medium grains or the fracture aperture [L], αC is the collision
efficiency factor, ηC is the single collector efficiency that is given by

ηC = 0.9

�
kBT

µwdcdmq

�2/3

+ 1.5

�
dc
dm

�2

+ (ρC,i − ρ)
gd2c

18µwq
, (6.8)

where kB is the Boltzmann constant, dc is the colloid diameter [m], T is the absolute temperature,
µw is the water viscosity, and all other terms remain as previously defined.
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For deep filtration (i.e., in the case of very dilute colloidal suspensions), there is no interaction
among the colloidal particles and no effects on the medium porosity φ and permeability, i.e., φ is
constant, and G = 1. Note that it is possible to have combined filtration, in which two different
types of filtration (e.g., equilibrium and kinetic, or two kinetic filtrations with different k+ and k−)
occur simultaneously.

Accumulation of Solutes In Colloid-Assisted Transport. The mass of a tracer i sorbed onto a
set of pseudocolloids j = 1, . . . , NC is given by:

YΘ,i =
NC�

j=1

(ρC,jξj + ρYj)Θi,j, (6.9)

where Θi,jis the sorbed mass of solute i per unit mass of the pseudocolloid j [kg kg−1 ], and
NC is the total number of pseudocolloid species involved in the transport of the solute. The first
term in the sum inside the parenthesis of Equation (6.9) describes the filtered (deposited) colloid
concentration, and the second the concentration of the suspended colloids in the liquid phase.
Note that Equation (6.9) applies to pseudocolloids only (Class III), as opposed to true colloids,
onto which contaminants are not considered to sorb.
For equilibrium physical sorption,

Θi =






KdρYi for linear equilibrium sorption,
KFρ

βF
i for Freundlich equilibrium sorption,

K1ρYi

1 +K2ρYi
for Langmuir equilibrium sorption,

(6.10)

where Kd [kg−1 m3 ], KF [kg−βF m3βF ], K1 [kg−1 m3 ], and K2 [kg−1 m3] are sorption param-
eters specific to each solute and rock type. Of particular interest is the parameter Kd, called the
distribution coefficient, which is the constant slope of the linear equilibrium adsorption isotherm
of a solute in relation to the medium. If a kinetic isotherm is followed, then sorption is described
by:

dΘi

dt
=






kl (KdρYi − δΘΘi) for linear kinetic sorption,
kF

�
KF (ρYi)

βF −Θi

�
for Freundlich kinetic sorption,

kL

�
K1ρYi

1 +K2ρYi
−Θi

�
for Langmuir kinetic sorption,

(6.11)

where δΘ is a Dirac delta function

δΘ =

�
1 for reversible linear kinetics physical sorption,
0 for irreversible linear kinetic physical sorption,

(6.12)

and kl, kF and kL are the kinetic constants for linear, Freundlich and Langmuir sorption, respec-
tively [s−1].

98 ascemdoe.org November 9, 2010



Process Model Mathematical Formulation Requirements

6.2.3 Flux Terms

The flux of tracer i has contributions from advective, diffusive, and dispersive transport processes,
and is given by

J i = −φsAρAqYi + φsAρAD
H
i ∇Yi, (6.13)

where q is the Darcy velocity vector of the aqueous phase, and DH
i is the dispersion tensor of

tracer i, a second order symmetric tensor with a principal axis aligned with the Darcy flow vector.
Omitting the i subscript, the dispersion tensor is described by the equations:

D = DTI +
DL −DT

q2
qq, (6.14)

DL = φsAτD0 + αLq, (6.15)

DT = φsAτD0 + αT q, (6.16)

where I is the unit vector, τ the tortuosity is coefficient of the pore paths [m m−1]; D0 is the
molecular diffusion coefficient of tracer i in water; αL and αT are the longitudinal and transverse
dispersivities, respectively [m]; q is the Darcy velocity vector and q is the magnitude of the ve-
locity. Equations (6.13) through (6.16) apply to solutes, but need the following modifications to
render them suitable for colloidal transport. More specifically:

1. The flux JA and the Darcy velocities q are multiplied by the factor φ (see Section 6.2.2).

2. The dispersivities αL and αT are generally different from those for solutes (Ibaraki and
Sudicky, 1995) and may be a function of the colloidal particle size.

3. The term D0 is the colloidal diffusion coefficient in water [m2 s−1] and is described by the
Stokes-Einstein equation, according to Bird et al. (1960), as

D0 =
kBT

3πµwdp
, (6.17)

where kB is the Boltzmann constant (1.38 × 10−23 JK−1 in SI units), T is the absolute
water temperature, µw is the dynamic viscosity of water, and dp is the colloid diameter [m].

4. The fluxes in Equation (6.13) are multiplied by the colloid accessibility factors fc (0 ≤ fc ≤
1) at the interface of different media. The fc factor describes the portion of the colloidal
concentration in a medium that is allowed to enter an adjacent medium of different charac-
teristics, and quantifies pore-size exclusion (straining).

In the treatment of the general 3-D dispersion tensor, velocities are averaged by using the projected
area weighting method (Wu et al., 1996), in which a velocity component qj (j ≡ x, y, z) of the
vector q is determined by vectorial summation of the components of all local connection vectors
in the same direction, weighted by the projected area in that direction. This approach allows the
solution of the transport problem in irregularly shaped grids, in which the velocities normal to the
interface areas are not aligned with the principal axes.
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6.2.4 Data Needs

The flow problem that defines the transport problem has specific data needs that are addressed
elsewhere, and will not be further discussed here. Data needs related to the colloid transport prob-
lem include the transport properties of (a) the porous/fractured media, (b) of the colloids and (c)
of the solutes described in the earlier sections (including colloidal size range, accessibility factors,
velocity factors, pore size distribution for straining evaluation, filtration parameters, sorption type
and sorption properties of solute species onto colloids in cases of colloid-assisted solute transport,
etc.). It is possible that some of these data needs can be covered from earlier laboratory studies,
and from data in the literature. If no previous data exist, the use of analogs and extensive sensitivity
analysis of the system behavior are a reasonable approach.

6.2.5 Boundary Conditions, Sources and Sinks

For colloid transport studies, the needed boundary conditions include (a) those of the hydrological
system and (b) those of the transport problem. The former are addressed by the solution of the flow
problem and will not be further discussed here. The latter are usually quite simple because they
either describe releases, or indicate lack of contaminants at the outer boundaries (or even inner) of
the simulated domain. There is significant uncertainty related to source/sink terms, as these are not
always known or well constrained. Lack of sufficiently accurate information on the subject will
probably necessitate significant sensitivity analysis of the impact of sources and sinks on colloidal
transport.

6.2.6 General and Other Considerations

The general analysis presented in the earlier sections is general is scope, and can be applied without
any limitations if the needed transport data are available. If, as is expected, the colloid-transport
capability will be developed in a flexible manner that will allow user-defined levels of complexity,
coupling and non-linearity, then no serious limitations of application are expected. However, it is
important to note that, for colloid-assisted solute transport, the code will have to be coupled with
solute transport capabilities (probably developed by other entities), or to include its own internal
colloid-assisted transport capability.

Multi-scale Versions. It is expected that multi-scale methods (e.g., multi-porosity, multi-permeability,
multiple interacting continua, etc.) will be necessary in some of the studies, especially when de-
scribing colloid transport through fractured media. The use of such methods is not expected to pose
any fundamental difficulties, as the general colloid transport equations apply without any modifi-
cation. However, such applications will necessitate knowledge of potential straining/filtration at
the subdomain interfaces, as well as knowledge of the transport properties and characteristics of
each subdomain.

100 ascemdoe.org November 9, 2010



Process Model Mathematical Formulation Requirements

7 Thermal Processes

7.1 Overview

Heat flow and thermal conduction is an important aspect of many geochemical systems affecting
chemical processes through changes in equilibrium and kinetic rate constants. Non-isothermal con-
ditions can also result in buoyancy driven flow resulting in convection cells and causing fingering
phenomena due to differences in density.

7.2 Process Model Equations

One form of the governing equation for energy conservation in a porous medium with porosity φ
is given by

∂

∂t

�
φ
�

α

sαραUα + (1− φ)ρrcrT
�
+∇ ·

��

α

qαραHα − κ∇T
�

= Qe. (7.1)

In this equation T refers to temperature and the subscript α represents a fluid phase with Darcy
velocity qα, density ρa, saturation sα, internal energy Uα, and enthalpy Hα. The coefficient κ
denotes the thermal conductivity of the medium and cr and ρr refer to the specific heat and density
of the porous medium. The quantity Qe denotes a source/sink term. Internal energy and enthalpy
are related by the equation

Uα = Hα − pα
ρα

. (7.2)

Thermal conductivity if often described by the phenomenological relation given by Somerton et al.
(1974)

κ = κdry +
√
sl(κsat − κdry), (7.3)

where κdry and κsat are dry and fully saturated rock thermal conductivities, and sl denotes the
saturation state of H2O.

7.3 Data Needs

Equations of state for fluid density, internal energy and/or enthalpy are needed in addition to heat
capacity and thermal conductivity of the porous medium. Often the fluid properties for a complex
mixture is unknown and the pure phase end member properties are used.

7.4 Boundary Conditions, Sources and Sinks

Boundary conditions may take the form of specified temperature or heat flux including zero tem-
perature gradient. Initial conditions include specifying the temperature over the computational
domain such as a constant value or derived from the geothermal gradient.
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7.5 Coupling Considerations

As heat flow is coupled to the Darcy flux, the heat equation itself is coupled to the flow equation
as well as reactive transport equations through heat generated by chemical reactions. Conversely
the flow and reactive transport equations are coupled to the heat equation through the tempera-
ture dependence of fluid properties such as density, viscosity, internal energy and enthalpy, and
equilibrium thermodynamic and kinetic rate constants.
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8 Geomechanical Processes

8.1 Overview

We define geomechanical models in the broad sense of models that describe coupled processes that
act to deform, or change the mechanical properties of the sediment, soil, or rock. Geomechanics
can play a very important role in the fluid flow of large groundwater basins. Changes in earth
stresses, from either natural (e.g. earthquakes) or anthropogenic (e.g. pumping) can affect porosity
and permeability in aquifers. Similarly, in some EM applications various processes may cause
significant changes in the stress field of the aquifer. For example, remediation treatments may
inject large volumes of water at temperatures that are significantly different from the background
temperature. In these cases a formal treatment of mechanics models may be required.
In addition to the mathematical/empirical description of geomechanical processes using consti-
tutive equations (e.g. Hookes Law), we also can include the underlying mechanistic equations
that may lead to a specific stress-strain relation. These may include coupled mechanical-chemical
processes (e.g., swelling, pressure solution, subcritical crack growth) mediated by transport and
stress. It also may include dissolution-precipitation leading to cementation (strengthening) or re-
actions leading to weakening (e.g., many silicate to clay weathering reactions).
This broad class of geomechanical models is targeted for development in later years, however,
it is important to provide background information that may impact the current requirements and
design documents. Thus, the following discussion is intended to provide a high-level overview of
concepts, and to summarize key elements in the mathematical formulation.

8.2 Assumptions and Applicability

While some shallow aquifer applications may require soil plasticity to be considered for slope
stability considerations, it is assumed that linear elasticity, Hookes law, will be sufficient for most
EM applications. In addition, the speed of sound for the rock or soil matrix in a typical aquifer will
be much faster than the sound speed in the fluid. Thus the force balance equations that represent
subsurface stresses are essentially steady state. Additionally, the velocity of the rock deformation
will be assumed instantaneous relative to the fluid velocity and not considered further.

8.3 THM Formulation

The momentum conservation equation for static geomechanical process is

∇ · σ + ρ g = 0,

where σ is the total stress tensor and g the gravitational acceleration vector. To describe the
interaction between the flow and deformation, the concept of effective stress has been introduced
by K.Terzaghi in 1923. This concept was further generalized by Maurice Biot in a number of
papers (Biot, 1941, 1955, 1973; Biot and Willis, 1957). Extending the Terzaghi’s effective stress
to the unsaturated state, we obtain

σ = σ� − αBp I,
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where p is the average pore pressure, σ� the effective stress tensor, and αB the Biot coefficient.
Introducing the displacement vector d, recalling the stress-strain relation, and taking into consid-
eration the thermal expansion effect, the effective stress tensor can be written as

σ� = C : �−KβTT I, � =
1

2
(∇d+ (∇d)T ) ≡ D(d),

where C is the fourth-order tangential elastic modulus tensor, � the strain tensor, T the temperature,
K the drained bulk modulus of the medium, and βT the volumetric thermal expansion coefficient.
Note that the model for the effective stress can be extended, for example, by incorporating swelling
due to moisture. Collecting the above, the momentum equation becomes

∇ · (C : D(d))−∇(αBp+KβTT ) + ρ g = 0. (8.1)

Thus, the flow equations affect the stresses through the temperature and pressure gradient terms
in the above equation. Additional coupling of the flow and force balance equations occurs though
the porosity and permeability terms in the flow equations. The displacements d calculated with
the force balance equations are used to calculate volume strains and porosity changes and these
changes are used to update permeabilities with some conceptual model.

8.4 Single-Phase Biot Model

The Biot model for a single phase flow is derived here under the following assumptions: (a) tem-
perature of the reservoir is constant, (b) there is no mass exchange between the rock phase and the
fluid phase, (c) the rock is elastic material, and (d) the fluid is incompressible. Two fundamen-
tal physical processes are the mass conservation and momentum balance for both fluid and rock
phases.
The constitutive equation for the effective stress is

C : � =
EY

1 + νp

�
�+

νp
1− 2νp

trace(�)I

�
,

where EY is Young’s modulus of elasticity and νp Poisson’s ratio. The governing equation for the
rock deformation become:

−∇ · [µL(∇d+ (∇d)T )]−∇(λL ∇ · d) +∇(αBp) = 0, (8.2)

where µL and λL are the Lamé constants:

λL =
EY νp

(1 + νp)(1− 2νp)
and µL =

EY

2(1 + νp)
.

Note that µL is sometimes called the shear modulus of the rock.
Generally speaking, αB could be a function of the fluid pressure and rock deformation. However,
for the simplified model, it is reasonable to assume that αB is the physical constant (Biot, 1941).
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To derive the second governing equation, we shall follow (Biot, 1941). It has been shown there
that the fundamental relation describing the increment θ of fluid volume per unit volume of soil
may be written as

θ = α1∇ · d+ α2p,

where α1 measures the ratio of the fluid volume squeezed out to the volume change of the soil if
the latter is compressed while allowing the fluid to escape and α2 is a measure of the amount of
fluid which can be forced into the soil under pressure while the volume of the soil is kept constant.
Since the fluid is incompressible, the mass conservation law states that the rate of fluid content in
an element of soil must be equal to the volume of fluid entering per second through the surface of
the element plus a flow rate Q from an external source or sink:

∂θ

∂t
= −∇ · q +Q,

or
∂(α1divd)

∂t
+

∂(α2p)

∂t
+∇ · q = Q.

The fluid flow equations are solved together with the force balance equation (8.2).

8.5 Boundary Conditions

Boundary conditions for the force balance equations consist of fixed displacements d at aquifer
boundaries or a variety of stress conditions that replicate known (measured or inferred) earth
stresses.
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9 Source Terms

9.1 Cementitious Source Terms

Cement waste forms and barriers are among the most important of the source terms that need to be
considered in a comprehensive Environmental Management simulation tool. Engineered barriers
including cementitious barriers are used at sites disposing or contaminated with low-level radioac-
tive waste to enhance performance of the natural environment with respect to controlling the po-
tential spread of contaminants. Drivers for using cementitious barriers include: high radionuclide
inventory, radionuclide characteristics (e.g., long half-live, high mobility due to chemical form /
speciation, waste matrix properties, shallow water table, and humid climate that provides water for
leaching the waste).
The ASCEM integrated modeling and simulation effort will develop several possibilities for deal-
ing with the cementitious source terms in the context of the ASCEM modeling and simulation
tool:

1. Make use of the simulation tools developed by the Cementitious Barriers Partnership (CBP)
to represent the cementitious source terms, including the release of contaminants and the
collateral effects of cement chemistry (e.g., high pH) on groundwater chemistry, or

2. Build on the conceptual models developed by the Cementitious Barriers Partnership to de-
velop complementary capabilities using the software tools in the HPC.

With the first option, the understanding is that the code or codes developed by the Cementitious
Barriers Partnership will be used as a source term, although possibilities for feedbacks between the
processes modeled by the ASCEM software (e.g., flow) and those modeled by the CBP code (e.g.,
cement degradation) will be limited under this scenario. The Cementitious Barriers Partnership
will be providing a detailed set of process models and their mathematical formulation for later
versions of this document. Many of the equations for an ASCEM HPC treatment of the cement
degradation and release processes are to be found throughout this document. Subsequent versions
of this document will describe the coupled set of equations that need to be considered.

9.2 Glass Waste Forms

A mathematical formulation for glass waste form corrosion over laboratory and geological periods
of time is under development as part of the Nuclear Energy Advanced Modeling and Simulation
(NEAMS) effort within the Department of Energy. The goal of this effort is to develop one or more
rate laws for glass corrosion that can be upscaled from the molecular to microscopic continuum
to macroscopic continuum scales. The upscaled rate law will be used in the ASCEM HPC code.
However, it is useful to discuss some of the key issues and processes associated with glass corrosion
and these are presented in the following sections.

106 ascemdoe.org November 9, 2010



Process Model Mathematical Formulation Requirements

9.2.1 Short and Long-Term Corrosion Rates

A large amount of information on the glass–water reaction collected over the past 25 years has been
summarized in the “glass compendium” (Cunnane, 1994) and numerous reviews (Barkatt et al.,
1986; Bourcier, 1991, 1994; Bunker et al., 1988; Casey and Bunker, 1990; Hench et al., 1986;
Icenhower et al., 2004; McGrail et al., 1997; Strachan and Croak, 2000; Vernaz and Dussossoy,
1992; Vernaz et al., 2001; Werme et al., 1990). Based on these reviews, the glass dissolution
reaction can be divided into four regimes or stages (Figure 1) that occur as the reaction proceeds
(e.g., Stage I, II, III, and IV).

Figure 4: General schematic of the stages of glass-water reaction

Stage I, commonly referred to as the initial rate, consists of the following processes: upon initial
contact by water, alkali cations are extracted by interdiffusion, which is considered a diffusion-
controlled reaction such that hydrogen or hydronium ions from the solution exchange for alkali
ions contained in the glass. The process of interdiffusion is followed by two simultaneous re-
actions; hydration and dissolution of the glass network. In dilute solutions, the TST-based model
successfully accounts for silicate dissolution in terms of temperature, pH, and reactive surface area.
As the concentration of dissolved components increases and the build-up of these components ap-
proach the formation of a thermodynamically unstable phase (hydrated surface layer), Stage II is
reached.
During Stage II the matrix dissolution rate becomes dependent on the solution saturation state
(concentration of elements in solution). Therefore, the process of ion exchange reaches a relatively
constant rate in accordance with a diffusion-controlled process as a hydrated surface layer (e.g.,
gel layer) develops on the surface of the glass over time. The hydrated surface layer forms when
relatively insoluble glass components (i.e., Al, Fe, and Si) accumulate in the bulk solution and
condense at the glass-water interface. Unlike the rate of ion-exchange, the dissolution rate of the
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glass network decreases because of the common ion effect (i.e., as the solution becomes more
concentrated in glass components). The difference in chemical potential between the glass and
aqueous phase decreases, which decreases the dissolution rate. This decrease in the rate of matrix
dissolution is partially due to the effect H4SiO4(aq) has on the dissolution rate and the formation
of the hydrated surface layer (Abraitis et al., 2000; Pierce et al., 2004). In other words, as the
activity of H4SiO4(aq) increases in the aqueous solution the rate of glass dissolution decreases.
It is important to note that in the case of glass, the dissolution rate cannot become zero because
silicate glasses are thermodynamically unstable in water.
During Stage III the solution becomes saturated and secondary minerals begin to form, the alter-
ation phase is often a simple clay mineral, such as a smectite or chlorite. The precipitation kinetics
associated with these phases can be complex, but in general the rate of secondary phase growth in-
creases in response to the increase in magnitude of supersaturation (Nagy, 1995; Nagy and Lasaga,
1993). Depending on the type of alteration phase, the glass-water reaction can increase from the
residual rate and return to the forward rate (e.g., Stage IV – alteration rate renewal). This type of
behavior has been observed in accelerated weathering experiments and may be associated with the
Al:Fe ratio of the glass formulation (Jantzen et al., 2008).

9.2.2 Glass Passivation

It has been hypothesized that alteration “protective gel” layers are formed during the glass disso-
lution that act as a diffusion barrier for the glass constituents, in particular silicon.
In Van Iseghem, Gin, Grambow, McGrail, Strachan, and Wicks (Van Iseghem et al.), the alteration
layer is defined as all glass altered by a dissolution reaction, where three types of sublayers are
distinguished (Figure 2). The diffusion layer is the layer closest to the pristine glass. In this (thin)
layer, high diffusion gradients of alkalis, hydrogen and boron exist. Otherwise the composition of
this layer is similar to the pristine glass Zavoshy et al. (1985). If the solution flows sufficiently slow,
the layer closest to the solution contains phases which have precipitated from solution. This layer
is called the precipitated layer. The newly formed phases are called secondary phases. The layer
between the diffusion layer and the precipitated layer is called the gel (layer). Here, the abundance
and ordering of secondary phases increases with distance from the glass (Zavoshy et al., 1985).
Most of the secondary phases have nucleated within the layers (Zavoshy et al., 1985) suggesting a
local equilibrium caused by the reaction of the remaining glass components with the pore solution.
A recent paper by Jantzen et al. (2010) reviews the thermodynamic and structural approaches to
the prediction of glass durability. Mechanistic modeling of glass durability including the slowing
of the dissolution rate due to affinity and/or surface layer effects was first modeled by Grambow
and Müller (2001) and is referred to as the GM2001 model. The GM2001 model combines the
effect of glass hydration by water diffusion with ion exchange and affinity-controlled glass network
corrosion. The slowing of dissolution due to the effect of a growing surface gel layer is represented
by a mass transfer resistance for silica by this layer. At the interface between the glass and the gel
layer, a different “gel layer” is assumed to be hydrated glass that allows the diffusion of H2O in
and boron and alkali atoms out of the glass. A 2003 modification of the GM2001 model, known
as the GM2003 model (Van Iseghem, Gin, Grambow, McGrail, Strachan, and Wicks, Van Iseghem
et al.) treats silica dissolution and silica diffusion through the gel separately from water diffusion
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and boundary conditions are specified at the gel/diffusion layer and the gel/solution interfaces.
Introducing a boron/alkali diffusion coefficient, the BRAG model describes boron/alkali diffusion
in the diffusion layer as well (Aertsens, 2007). Recently, the Glass Reactivity with Allowance for
the Alteration Layer (GRAAL) model (Frugier et al., 2009, 2008) has been proposed, which is
dependent on the composition and the passivating nature of the gel layer, called the passivating
reactive interphase (PRI). The GRAAL model considers that water diffusion in the passivating
reaction zone (the gel formed under saturation conditions) is a rate-limiting step in the overall
glass dissolution kinetics. Moreover, this passivation zone is a soluble phase whose stability is
directly dependent on the nature of the secondary phases likely to precipitate and on the solution
renewal conditions.
An alternate approach to modeling the effect of glass alteration layers has been used at the Hanford
Site (Pierce et al., 2004). Alteration products were modeled as a series of amorphous solids. Using
the boron release data from the PCT experiments with LAWA44 glass, a reaction progress value
was calculated as a function of test duration.

9.2.3 Radionuclide Release

Before the ILAW can be disposed, DOE must conduct a PA for IDF that describes the long-term
impacts of the disposal facility on public health and environmental resources. One of the inputs to
the PA is estimates of radionuclide release rates from the engineered portion of the disposal facility
(source term). These estimates are expected to be based on chemical reactions that occur in the
near-field and are controlled by the dissolution of the vitrified matrix. Therefore to provide cred-
ible estimates, a mechanistic understanding of the basic physical and geochemical processes that
control glass dissolution and hence, radionuclide release, must be understood and incorporated into
models in order to effectively simulate the glass-water reaction over the period of regulatory con-
cern (approximately 10 000 years). Neglecting glass composition, the dissolution rate is a function
of temperature, pH, and solution composition of the fluid contacting the glass. The temperature
of the IDF is a known constant, 15◦C. However, both pH and composition of the fluid contacting
the glass are variables that are affected by flow rate, reactions with other engineered materials,
gas-water equilibria, secondary phase precipitation, alkali-ion exchange, and by dissolution of the
glass itself. Consequently, glass dissolution rates will vary both in time and as a function of po-
sition in the disposal system. There is no physical constant such as a “leach rate” or radionuclide
release rate parameter that can be assigned to the glass waste form in such a dynamic system.
A model based on empirical release behavior of the glass cannot provide feedback regarding the
impacts of design options on the disposal system performance. Therefore, the source-term anal-
ysis requires the use of a reactive chemical transport modeling framework that takes into account
the coupled effects of fluid flow and glass-water reactions on the chemistry of fluids percolat-
ing through the disposal facility. The fluid chemistry is coupled with kinetic rate equations that
describe the response of the glass corrosion rate to changes in fluid composition in the disposal
facility or repository, all computed as a function of time and space. These kinetic rate equations
assume

1. the dependence of dissolution and precipitation rates on departure from equilibrium are
based on arguments and assumptions of Transition State Theory (TST) and,
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2. the driving force for the transformation of unstable to stable silicate materials is governed
principally by the magnitude of displacement from thermodynamic equilibrium.

To predict the long-term fate of glass in the subsurface over the period of regulatory concern, a
mathematical model that describes glass reactivity is needed. Over the last few decades, a general
rate equation has been fashioned to describe the dissolution of glass (and more ordered materi-
als) into aqueous solution. The overall dissolution equation for glass may be quite complex, for
example:

LAWABP1 + 4.42× 10−1 H+ + 1.89× 10−1 H2O → 1.36× 10−1 AlO−
2

+ 1.84× 10−1 B(OH)3(aq) + 1.13× 10−2 Cl− + 1.82× 10−4 CrO2−
4

+ 1.46× 10−3 F− + 2.16× 10−2 Fe(OH)3(aq) + 1.54× 10−7 IO−
3

+ 3.23× 10−2 K+ + 8.48× 10−3 La3+ + 1.71× 10−2 Mg2+ + 4.46× 10−1 Na+

+ 7.79× 10−4 HPO2−
4 + 3.52× 10−8 PuO2(CO3)

4−
3 + 8.63× 10−4 SO2−

4

+ 1.77× 10−8 SeO2−
4 + 4.82× 10−1 SiO2(aq) + 6.59× 10−7 TcO−

4

+ 2.15× 10−2 Ti(OH)4(aq) + 9.81× 10−7 UO2(OH)2(aq)
+ 2.20× 10−2 Zn2+ + 2.94× 10−2 Zr(OH)4(aq).

(9.1)
However, as described below, the equation is based upon the TST of chemical kinetics, in which
the overall reaction rate is governed by the slowest elementary reaction. Elementary reactions have
simple stoichiometry and can be combined as an overall reaction. In many cases, the elementary
reactions can only be inferred. As an example of the elementary reaction, consider the dissolution
of SiO2 polymorphs to form silicic acid:

SiO2(s) + 2H2O ↔ SiO2 · 2H2O
‡ → H4SiO4(aq), (9.2)

in which SiO2 · 2H2O‡ represents an activated complex. Note that the reactants and the activated
complex in Equation (9.2) are linked by a double-headed arrow symbolizing a reversible reaction.
Equation (9.2) also illustrates that the TST formulation assumes the decay of the activated complex
is an irreversible reaction.
Previous studies have established that the corrosion rate of silicate waste glasses is a complex pro-
cess that depends strongly on temperature, pH, and the chemical composition of the aqueous solu-
tion contacting the glass. When the aqueous solution is dilute, the glass dissolves at a characteristic
forward rate that depends only on glass composition, temperature, and solution pH (McGrail et al.,
1997). In static systems, or where the rates of mass transport by fluid flow are slow, dissolution
releases glass components into the aqueous solution, and the concentration of these elements in
the contacting fluid increases. The buildup of these dissolved components leads to slower glass
corrosion rates as the contacting solution becomes more concentrated. As solution concentrations
of dissolved elements continue to increase, solubility limits with respect to secondary phase(s) are
reached, and these phases may begin to precipitate. Because silicate glasses are meta-stable solids,
thermodynamics dictates that the glass will continue to dissolve or transform into more stable alter-
ation phases. The key factor controlling long-term durability of waste glasses is the rate at which
this processes proceeds.
The rate law that appears to best describe this overall dissolution behavior developed by Aagaard
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and Helgeson (1982) and applied to glass by Grambow (1985) is presented as follows:

ri = k+
o via

η
H+ exp

�
Ea

RT

��
1−

�
Q

Kg

�σ��

j

aj. (9.3)

The chief virtue of Equation (9.3) is that it can be directly input into reaction-transport codes for
predicting the long-term dissolution behavior of glass. Another benefit of Equation (9.3) is that it
is solidly based on the TST of chemical kinetics, in which a series of reaction rates are governed by
the slowest elementary reaction. Therefore, it is simply necessary to ascertain the “rate limiting”
step in dissolution, rather than attempt to fully understand all of the possible reactions and kinetic
pathways that can occur during the reaction of glass with aqueous solution. Because this rate-
limiting step is an “elementary reaction,” the stoichiometry of the reaction is typically simple and
can easily be modeled.
In addition, test results with LAWABP1 glass (and most other ILAW glasses) show that it is sus-
ceptible to a secondary reaction mechanism, alkali ion exchange, which can have a significant
impact on solution pH. This reaction results in the selective extraction of Na via a reaction

LAWABP1Na + H+ → LAWABP1H + Na+,

where LAWABP1Na represents the unreacted glass containing Na and LAWABP1H represents a
hydrated glass where the Na has been replaced with an equimolar amount of hydrogen.

9.3 High-Level Radioactive Waste Tanks as Source Terms

Historical releases of high-level radioactive waste from underground storage tanks at U.S. Depart-
ment of Energy (DOE) sites were highly basic and high ionic strength, often with strong chelating
agents present. Source terms for these release will require liquid release rates as well as the com-
position and speciation of the in-tank waste. Very few analyses of tank waste were performed;
consequently, the compostion of the wastes is typically based on reconstructions of process waste
streams and tank storage procedures. Physical and chemical characterization of tank sludge, solids,
and interstitial liquids can be critical to the determination of the liquid components in a tank release.
Prediction of the chemical behavior of the tank waste requires high-ionic strength thermodynamic
models to accurately speciate the chemical components under the relatively extreme electrolyte,
radioactivity, and temperature conditions. These predictive thermodynamic models are discussed
in the section on Activity Corrections, (see Section 5.2).
In the simplest case, the tank waste source term would be concentrations of chemical species
released at a liquid flow rate. Thermal effects from radiolytic heating could induce temperature-
dependent fluid properties, reaction thermodynamics, and equations of state. Near-field analyses
could include multiphase flow in the vadose zone immediately surrounding the tank. In the extreme
case with self-boiling tanks, a heat pipe effect could set up where liquid water would evaporate,
be driven away as water vapor before condensing at distance. The evaporation would result in
hypersaline conditions with increasing liquid density and the precipitation of salts, which cause
pore fluids to move toward the tank and lower the vapor pressure.
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In subsequent versions of this document, the complete set of coupled equations for treatment of
the complex tank source terms will be presented. These conceptual and mathematical models,
however, are currently still under development.
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A Nomenclature

A.1 Variables

The International System of Units (SI) are used as the basic units in Table 5 and Table 6. It
is recommended that the internal implementation use a single consistent system of units. Any
appropriate units can be used for the input database and output with appropriate conversion factors.
Table 2, Table 3 and Table 7 contain additional variables specific to the Pitzer model, Section 5.2.5.
In the text, bold variables, J , indicate vector or tensor quantities, while normal variables, J , indi-
cate scalars.

Table 5: List of Latin variables. Unitless variables are indi-
cated by —.

Symbol Meaning Units
A aqueous species
A Debye-Hückel parameter
Am surface area m2 m−3

ai chemical species activity —
å diameter of solute species m
B biomass concentration cells m−3

Ḃ Debye-Hückel parameter
Bγ Debye-Hückel parameter
b Debye-Hückel parameter
C capacitance C V −1 m−2

C 4th-order tangential elastic modulus ten-
sor

C molar concentration mol L−1

Cp specific heat capacity J K−1

D diffusion coefficient m2 s−1

DH hydrodynamic dispersion coefficient m2 s−1

D drainage m s−1

dc colloid diameter m
d displacement m
Ea activation energy J mol−1

E evaporation m s−1

EY Young’s modulus Pa
e scaled unit vector —
F Faraday constant C mol−1

Ff formation factor —
f fugacity Pa
fs cell synthesis fraction —
fe energy fraction —

Continued on next page
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Table 5 – Continued
Symbol Meaning Units

fv velocity adjustment factor —
fc colloid accessibility factor —
G Gibbs Energy J
GB dynamic blocking function
GD ground water recharge m s−1

g gravitational acceleration m s−2

H enthalpy J
h hydraulic head m
hα partial molar phase ethalpy J mol−1

I unit vector
I i,j reaction rate mol m−3 s−1

I irrigation m s−1

I identity matrix —
Ī ionic strength mol kg−1

H2O

i current density A m−2

J flux kg m−2 s−1

K hydraulic conductivity m s−1

Keq, Km equilibrium constant —
Ki half saturation constant mol kg−1

H2O

Kd distribution coefficient L3 kg−1

k permeability m2

k+ forward rate constant s−1

k− reverse rate constant s−1

kB Boltzmann constant J K−1

Li,j phenomenological coefficient
L, Le path length m
M mineral species —
M mass kg, mol
M+ competing cation
m molality
Nc number of components —
Np number of phases —
n number of moles mol
P natural precipitation m s−1

p pressure Pa
pc capillary pressure Pa
Q mass source or sink kg m−3 s−1

QT energy source/sink J m−3 s−1

Q ion activity product —
q(i) concentration of adsorbed cation mol g−1

q Darcy flux m3 m−2 s−1 or m s−1

Continued on next page
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Table 5 – Continued
Symbol Meaning Units

R Gas constant J K−1 mol−1

Rover overland flow m s−1

Rj rate of production of primary species mol m−3 s−1

Rj reaction rate mol m−3 s−1

RH energy source term J m−3 s−1

Rf Retardation effect –
r radius m
S entropy J K−1

s saturation —
∆Lf fracture spacing m
T temperature Kelvin
Tt transpiration m s−1

t time s
tj transference number —
U internal energy J
u internal energy J
uj species mobility m2 V olt−1 s−1

V volume m3

Vm volume fraction m3 m−3

V̄ molar volume m3 mol−1

v fluid velocity m s−1

W formula or molecular weight kg mol−1

Wst soil water storage m s−1

Xex exchange site mol kg−1
H2O

X mole fraction —
Y mass fraction —
zi species charge
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Table 6: List of Greek variables. Unitless variables are indi-
cated by —.

Symbol Meaning Units
αL longitudinal dispersivity m
αT transverse dispersivity m
αB Biot coefficient −
β charge equivalent fraction
βF Freundlich exponent —
βT volumetric thermal expansion coefficient
γ activity coefficient —
∆ film thickness m
δ aperture m
� strain —
�R relative dielectric constant
�f filter coefficient
�0 permittivity of free space C2 J−1 m−1

η viscosity Pa s−1

ηC single collector efficiency
Θ angle radians
Θi,j sorbent per unit mass pseudocolloid kg kg−1
κ inverse of double layer thickness m−1

κe electrical conductivity
κT thermal conductivity W K−1 m−1

λ phase mobility
λw rational activity coefficient –
λL Lamé constant
λ axis of symmetry —
µ dynamic viscosity Pa s
µi chemical potential J mol−1

µL Lamé constant, shear modulus
νij stoichiometric reaction coefficient —
νp Poisson’s ratio —
ξ filtered concentration of colloids m3 m−3

π mathematical constant —
ρ mass density kg m−3

ρ� molar density mol m−3

σ stress Pa
σα partial molar entropy J K−1 mol−1

σcd surface charge density C m−2

τ tortuosity —
Υ cell yield cells mol−1

substrate

υ rate of substrate utilization s−1

Continued on next page
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Table 6 – Continued
Symbol Meaning Units

Φ electrical potential Volts or J C−1

φ porosity —
ϕ osmotic coefficient
χ average stoichiometric coefficient
Ψ total concentration of primary species molal
ψ surface potential V
Ω total flux of primary species mol m−2 s−1

∇ vector differential operator —

Table 7: List of variables used in the Pitzer, UNIQUAC and
NEA SIT models, Section 5.2

.

Symbol Meaning Units
α Pitzer parameter
β Pitzer interaction coefficient
� NEA SIT second-order interaction coeffi-

cient
θ Pitzer interaction coefficient

UNIQUAC parameter
λ Pitzer interaction coefficient
µ Pitzer interaction coefficient
σ Pitzer interaction coefficient
ψ UNIQUAC parameter

Pitzer interaction coefficient
A Pitzer parameter

Pitzer temperature function
a Pitzer temperature constants
b Pitzer parameter
f rational activity coefficient, UNIQUAC —
J Pitzer Chebyshev polynomial —
q UNIQUAC surface area parameter
r UNIQUAC volume parameter
u UNIQUAC pair interaction parameter
z UNIQUAC coordination number
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Bäder, F. G. (1978). Analysis of double-substrate limited growth. Biotechnology and Bioengineer-
ing 20(2), 183–202.

Banfield, J., G. Tyson, E. Allen, and R. Whitaker (2005). The search for a molecular-level under-
standing of the processes that underpin the Earth’s biogeochemical cycles. Reviews in mineral-
ogy and geochemistry 59(1), 1.

Barenblatt, G., I. Zheltov, and I. Kochina (1960). Basic Concepts in the Theory of Homogeneous
Liquids in Fissured Rocks. J. Appl. Math. Mech 24, 1286–1303.

Barkatt, A., B. Gibson, P. Macedo, C. Montrose, W. Sousanpour, A. Barkatt, M. Boroomand,
V. Rogers, and M. Penafiel (1986). Mechanisms of defense waste glass dissolution. Nuclear
Technology 73(2), 140–164.

Barnett, M., P. Jardine, and S. Brooks (2002). U (VI) adsorption to heterogeneous subsurface
media: Application of a surface complexation model. Environ. Sci. Technol 36(5), 937–942.

Bates, R. G. (1964). Determination of pH. Wiley and sons, New York.

Bear, J. (1972a). Dynamics of fluid in porous media.

Bear, J. (1972b). Dynamics of fluid in porous media.

118 ascemdoe.org November 9, 2010



Process Model Mathematical Formulation Requirements

Berner, R. (1977). Stoichiometric models for nutrient regeneration in anoxic sediments. Limnology
and Oceanography 22(5), 781–786.

Biot, M. (1941). General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164.

Biot, M. (1955). Theory of elasticity and consolidation for porous anisotropic solid. J. Appl.
Phys. 26, 182–185.

Biot, M. (1973). Nonlinear and semilinear rheology of porous solids. J. Geophy. Res. 73, 4924–
4937.

Biot, M. and D. Willis (1957). The elastic coefficients of the theory of consolidation. J. Appl.
Mech. 24, 594–601.

Bird, R. B., W. E. Stewart, and E. N. Lightfoot (1960). Transport Phenomena. New York: John
Wiley & Sons.

Bond, D., J. Davis, and J. Zachara (2008). Uranium(VI) release from contaminated vadose zone
sediments: Estimation of potential contributions from dissolution and desorption. In M. Barnett
and D. Kent (Eds.), Adsorption of metals by geomedia II: variables, mechanisms, and model
applications, pp. 153. Elsevier Science Ltd.

Bourcier, W. (1991). Overview of chemical modeling of nuclear waste glass dissolution. In Fall
meeting of the Materials Research Society (MRS), Boston, MA (United States), 24 Nov-1 Dec
1990.

Bourcier, W. (1994). Critical review of glass performance modeling. Technical report, ANL–94/17,
Argonne National Lab., IL (United States).

Bourg, I., G. Sposito, and A. Bourg (2008). Modeling the diffusion of Na+ in compacted water-
saturated Na-bentonite as a function of pore water ionic strength. Applied Geochemistry 23(12),
3635–3641.

Bouwer, H. (1991). Simple derivation of the retardation equation and application to preferential
flow and macrodispersion. Ground Water 29(1), 41–46.

Bowen, B. D. and N. Epstein (1979). Fine particle deposition in smooth parallel-plate channels.
Journal of colloid and interface science 72(1), 81–97.

Bowen, R. M. (1968). On the stoichiometry of chemically reacting materials. Archive for Rational
Mechanics and Analysis 29(2), 114–124.

Brantferger, K. M. (1991). Development of a thermodynamically consistent, fully implicit, com-
positional, equation-of-state, steamflood simulator. Ph. D. thesis, The University of Texas at
Austin.

Brantferger, K. M., G. A. Pope, and K. Sepehrnoori (1991). Development of a thermodynamically
consistent, fully implicit, equation-of-state, compositional steamflood simulator. SPE 21253,
471–480.

119 ascemdoe.org November 9, 2010



Process Model Mathematical Formulation Requirements

Brooks, R. and A. Corey (1964). Hydraulic properties of porous media.

Buck, E., R. Aguilar, S. Alcorn, and J. Cunnane (2003). Waste form and in-drift colloids-
associated radionuclide concentrations: Abstraction and summary. Technical Report MDL-
EBS-PA-000004 REV 00, Bechtel SAIC Company, Las Vegas, Nevada.

Buddemeier, R. W. and J. R. Hunt (1988). Transport of colloidal contaminants in groundwater:
radionuclide migration at the Nevada Test Site. Applied Geochemistry 3(5), 535–548.

Bunker, B., D. Tallant, and T. Headley (1988). Structure of leached sodium borosilicate glass.
Physics and Chemistry of Glasses 29(3), 106–20.

Burdine, N. (1953). Relative permeability calculations from pore-size distribution data. Trans.
AIME 198(1), 71–78.

Casey, W. and B. Bunker (1990). Leaching of mineral and glass surfaces during dissolution.
Reviews in Mineralogy and Geochemistry 23(1), 397.

Cernik, M., M. Borkovec, and J. Westall (1996). Affinity distribution description of competitive
ion binding to heterogeneous materials. Langmuir 12(25), 6127–6137.

Clegg, S. L. and P. Brimblecombe (1990). Solubility of Volatile Electrolytes in Multicomponent
Solutions with Atmospheric Applications. In Melchoir, D. C. and Bassett, R. L., editors, Chem-
ical Modelling of Aqueous Systems II, Volume 416, pp. 58–73. American Chemical Society,
Washington D. C.

Corapcioglu, M. Y., N. M. Abboud, and A. Haridas (1987). Governing equations for particle
transport in porous media. In J. Bear and M. Y. Corapcioglu (Eds.), Proceedings of the NATO
Advanced Study Institute on Fundamentals of Transport Phenomena in Porous Media”, Newark,
Delaware, USA, July 14-23, 1985, pp. 209–342.

Cunnane, J. C. (1994). High-level waste borosilicate glass: A compendium of corrosion charac-
teristics.

Curtis, G., J. Davis, and D. Naftz (2006). Simulation of reactive transport of uranium (VI) in
groundwater with variable chemical conditions. Water Resour. Res 42(4).

Curtis, G., P. Fox, M. Kohler, and J. Davis (2004). Comparison of in situ uranium Kd values with a
laboratory determined surface complexation model. Applied Geochemistry 19(10), 1643–1653.

Cussler, E. L. (1997). Diffusion: Mass transfer in fluid systems. New York: Cambridge University
Press.

Dale, A., P. Regnier, N. Knab, B. Joergensen, and P. Van Cappellen (2008). Anaerobic oxidation
of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport
modeling. Geochimica et Cosmochimica Acta 72(12), 2880–2894.

Dale, A., P. Regnier, and P. Van Cappellen (2006). Bioenergetic controls on anaerobic oxidation
of methane (AOM) in coastal marine sediments: A theoretical analysis. American Journal of
Science 306(4), 246.

120 ascemdoe.org November 9, 2010



Process Model Mathematical Formulation Requirements

Davies, C. W. (1962). Ion Association. Butterworths, London.

Davis, J., J. Coston, D. Kent, and C. Fuller (1998). Application of the surface complexation
concept to complex mineral assemblages. Environ. Sci. Technol 32(19), 2820–2828.

Davis, J. and D. Kent (1990). Surface complexation modeling in aqueous geochemistry. In M. F.
Hochella and A. F. White (Eds.), Mineral-Water Interface Geochemistry, Volume 23, pp. 177–
260. Mineral Soc America.

Davis, J., D. Meece, M. Kohler, and G. Curtis (2004). Approaches to surface complexation
modeling of Uranium (VI) adsorption on aquifer sediments1. Geochimica et Cosmochimica
Acta 68(18), 3621–3641.

De Marsily, G. (1986). Quantitative Hydrogeology: Groundwater Hydrology for Engineers. San
Diego, California: Academic.

Denbigh, K. (1981). The principles of chemical equilibrium: with applications in chemistry and
chemical engineering. Cambridge Univ Pr.

Ding, M., P. W. Reimus, W. Lukens, S. Chipera, and C. Scism (2006). Sorption characteristics of
radionuclides on clays in yucca mountain alluvium. In IHLRWM 2006, April 30 – May 4 2006,
Las Vegas, Nevada.

Dzombak, D. and F. Morel (1990). Surface complexation modeling: Hydrous ferric oxide. Wiley-
Interscience.

EPRI (1999). Colloids in Saturated and Partially-Saturated Porous Media, Approaches to the
Treatment of Colloids in Yucca Mountain Total System Performance Assessment. Technical
Report EPRI TR-112135, Electric Power Research Institute, Palo Alto, California.

Felmy, A. R. and J. H. Weare (1986). The prediction of borate mineral equilibrium in natural
waters: Application to searles lake, california. Geochimica et Cosmochimica Acta 50, 2771–
2783.

Freeze, R. and J. Cherry (1979). Groundwater. Prentice Hall, Englewood Cliffs, New Jersey.

Frugier, P., T. Chave, S. Gin, and J. Lartigue (2009). Application of the GRAAL model to leaching
experiments with SON68 nuclear glass in initially pure water. Journal of Nuclear Materials.

Frugier, P., S. Gin, Y. Minet, T. Chave, B. Bonin, N. Godon, J. Lartigue, P. Jollivet, A. Ayral,
L. De Windt, et al. (2008). SON68 nuclear glass dissolution kinetics: Current state of knowledge
and basis of the new GRAAL model. Journal of Nuclear Materials 380(1-3), 8–21.
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